{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using pydap and pandas to read EBAS data\n", "\n", "See more at http://ebas.nilu.no/\n", " \n", "The EBAS database collects observational data on atmospheric chemical composition and physical properties from a variety of national and international research projects and monitoring programs, such as ACTRIS, AMAP, EMEP, GAW and HELCOM, as well as for the Norwegian monitoring programs funded by the Norwegian Environment Agency, the Ministry of Climate and Environment and NILU – Norwegian Institute for Air Research." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Import Python packages" ] }, { "cell_type": "code", "execution_count": 140, "metadata": {}, "outputs": [], "source": [ "from pydap.client import open_dods, open_url\n", "from netCDF4 import num2date\n", "import pandas as pd\n", "import cftime\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Get data directly from EBAS database\n", "\n", "\n", "- syntax: `ST_STATION_CODE.FT_TYPE.RE_REGIME_CODE.MA_MATRIX_NAME.CO_COMP_NAME.DS_RESCODE.FI_REF.ME_REF.DL_DATA_LEVEL.dods`\n", "- or: `#station.instrument_type.IMG.matrix.component.resolution.instrument_reference.datalevel.dods`\n", "- if no level, then `..dods`\n", "- if doesn't work, download one file to check what are the `FI_REF` and `ME_REF`.\n", "- other example: `http://dev-ebas-pydap.nilu.no/NO0042G.Hg_mon.IMG.air.mercury.1h.NO01L_tekran_42_dup.NO01L_afs..dods`" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# get directly from EBAS\n", "ds = open_dods(\n", "'http://dev-ebas-pydap.nilu.no/' \n", "'NO0042G.dmps.IMG.aerosol.particle_number_size_distribution'\n", "'.1h.NO01L_NILU_DMPSmodel2_ZEP.NO01L_dmps_DMPS_ZEP01.2.dods')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Format data into pandas dataframe" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [], "source": [ "#get the actual data\n", "dmps_data = ds['particle_number_size_distribution_amean']\n", "\n", "# get normalised size distribution in dNdlogDp\n", "dNdlogDp = dmps_data.particle_number_size_distribution_amean.data\n", "\n", "# get time in datatime format using function from netCDF4 package\n", "tim_dmps = num2date(dmps_data.time.data,units='days since 1900-01-01 00:00:00',\n", "calendar ='gregorian')\n", "\n", "# get diameter vector\n", "dp_NILU = dmps_data.D.data\n", "\n", "# make DataFrame to simplify the handling of data\n", "df_NILU = pd.DataFrame(dNdlogDp.byteswap().newbyteorder(), index=dp_NILU, columns=tim_dmps)" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2016-05-06 05:30:002016-05-06 06:30:002016-05-06 07:30:002016-05-06 08:30:002016-05-06 09:30:002016-05-06 10:30:002016-05-06 11:30:002016-05-06 12:30:002016-05-06 13:30:002016-05-06 14:30:00...2017-12-31 14:30:002017-12-31 15:30:002017-12-31 16:30:002017-12-31 17:30:002017-12-31 18:30:002017-12-31 19:30:002017-12-31 20:30:002017-12-31 21:30:002017-12-31 22:30:002017-12-31 23:30:00
10.020.1627.8633.8938.9632.8244.25295.19697.74840.26946.78...8.528.2913.868.189.968.416.929.8110.946.79
12.041.1637.9346.0753.3250.7666.31169.43543.821132.411570.59...8.509.417.677.366.707.477.537.196.927.05
14.059.7948.3857.6364.4468.8192.40100.44330.05889.541576.16...10.8611.295.138.205.696.988.085.974.8010.96
17.052.0145.1456.4062.0173.59102.4779.43117.88266.77772.37...15.8813.768.779.548.487.137.996.125.1712.47
21.021.9828.0337.4144.5254.9873.0187.58115.21152.36243.23...23.4617.9823.1411.8215.619.808.359.218.287.09
\n", "

5 rows × 14515 columns

\n", "
" ], "text/plain": [ " 2016-05-06 05:30:00 2016-05-06 06:30:00 2016-05-06 07:30:00 \\\n", "10.0 20.16 27.86 33.89 \n", "12.0 41.16 37.93 46.07 \n", "14.0 59.79 48.38 57.63 \n", "17.0 52.01 45.14 56.40 \n", "21.0 21.98 28.03 37.41 \n", "\n", " 2016-05-06 08:30:00 2016-05-06 09:30:00 2016-05-06 10:30:00 \\\n", "10.0 38.96 32.82 44.25 \n", "12.0 53.32 50.76 66.31 \n", "14.0 64.44 68.81 92.40 \n", "17.0 62.01 73.59 102.47 \n", "21.0 44.52 54.98 73.01 \n", "\n", " 2016-05-06 11:30:00 2016-05-06 12:30:00 2016-05-06 13:30:00 \\\n", "10.0 295.19 697.74 840.26 \n", "12.0 169.43 543.82 1132.41 \n", "14.0 100.44 330.05 889.54 \n", "17.0 79.43 117.88 266.77 \n", "21.0 87.58 115.21 152.36 \n", "\n", " 2016-05-06 14:30:00 ... 2017-12-31 14:30:00 2017-12-31 15:30:00 \\\n", "10.0 946.78 ... 8.52 8.29 \n", "12.0 1570.59 ... 8.50 9.41 \n", "14.0 1576.16 ... 10.86 11.29 \n", "17.0 772.37 ... 15.88 13.76 \n", "21.0 243.23 ... 23.46 17.98 \n", "\n", " 2017-12-31 16:30:00 2017-12-31 17:30:00 2017-12-31 18:30:00 \\\n", "10.0 13.86 8.18 9.96 \n", "12.0 7.67 7.36 6.70 \n", "14.0 5.13 8.20 5.69 \n", "17.0 8.77 9.54 8.48 \n", "21.0 23.14 11.82 15.61 \n", "\n", " 2017-12-31 19:30:00 2017-12-31 20:30:00 2017-12-31 21:30:00 \\\n", "10.0 8.41 6.92 9.81 \n", "12.0 7.47 7.53 7.19 \n", "14.0 6.98 8.08 5.97 \n", "17.0 7.13 7.99 6.12 \n", "21.0 9.80 8.35 9.21 \n", "\n", " 2017-12-31 22:30:00 2017-12-31 23:30:00 \n", "10.0 10.94 6.79 \n", "12.0 6.92 7.05 \n", "14.0 4.80 10.96 \n", "17.0 5.17 12.47 \n", "21.0 8.28 7.09 \n", "\n", "[5 rows x 14515 columns]" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_NILU.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Select time and Plot" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index([2016-05-06 05:30:00, 2016-05-06 06:30:00, 2016-05-06 07:30:00,\n", " 2016-05-06 08:30:00, 2016-05-06 09:30:00, 2016-05-06 10:30:00,\n", " 2016-05-06 11:30:00, 2016-05-06 12:30:00, 2016-05-06 13:30:00,\n", " 2016-05-06 14:30:00,\n", " ...\n", " 2017-12-31 14:30:00, 2017-12-31 15:30:00, 2017-12-31 16:30:00,\n", " 2017-12-31 17:30:00, 2017-12-31 18:30:00, 2017-12-31 19:30:00,\n", " 2017-12-31 20:30:00, 2017-12-31 21:30:00, 2017-12-31 22:30:00,\n", " 2017-12-31 23:30:00],\n", " dtype='object', length=14515)" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_NILU.columns" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "cftime._cftime.DatetimeGregorian" ] }, "execution_count": 119, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(df_NILU.columns[0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "tsel = cftime.DatetimeGregorian(2016, 5, 6, 5, 30)" ] }, { "cell_type": "code", "execution_count": 154, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAFcCAYAAABlQvvgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABpbElEQVR4nO3dd3wb9f3H8dfHcrziOImz9x6ETUIIpOxN2HuW0AKlrPYHZRRaCFCgQIFSoAVaKGXPsAkjQNgBEjYhA7L3cuI43tL398edHFmRHSWxfLL9fj4e95B199XdR3eSrI++y5xziIiIiIiIiABkBB2AiIiIiIiIpA8liSIiIiIiIlJDSaKIiIiIiIjUUJIoIiIiIiIiNZQkioiIiIiISA0liSIiIiIiIlJDSaKISCMws0lm1qzmHDKzcWbmzGyfrdiHM7NJDRZUM2BmD/vnpW/QsWwNMxvrP4+xQcdSn7riNLO5ZjY3mKgSf2aY2T5+rOMCCisaR6DnRkRST0miiKScmV3tf7FxZjYk6HgkOU3lS75IOmrKP4A0xx+1RGTzZAYdgIg0b2ZmwK8BBxhwDvCHQIOShnIP8BQwP+hAJC29AEwGlgQdyBbaP+Dj/xLICziGugR9bkQkxZQkikiqHQT0Ax4GDgXONLOrnHOVgUYlW805txJYGXQckp6cc2uBtUHHsaWccz8HfPy0/fEl6HMjIqmn5qYikmrn+Lf/Bh4HOgLH1FXYzHqa2T1mNtvMKsxslZm9bGa7Jihb0yfOzE41s8/MrCS2r4yZdTOze/0+NJVmtsLMxpvZ8AT7yzKzi83sSzMrMrNS/3EvmdkBCcrvb2ZvmNlqMys3s5lm9lcza7sF5yl+33P9pa1/Phb5x5jmx2gJHjPWzJ73z12ZmRWb2cdmdnodx5jkn78sM7vGzGb45/xhv5ncf/2i/41pLlzTV66+PolmNtTMHvKfQ4WZLTezD83st0k+/0wzO9/MJvvPo9TMvjKzC80s6f9dMc8x08yuMrNZfjwLzOwWM8uKK9/XL/9wffuLW1fTT8zMRvivibX+a+h5M+vll+tvZk/5r8EyM3vPzHasJ/wMM7vEzKb7136hmd1pZgV1xNag7526+M/jATP7yX8eq83sOzO7z8w6xJTbqLmybehvWdey0fHN7BT/XBX55+FHM/uTmWVvKta4/Qw0s2f9/aw3s0/MbEw95Tfqd2dJfEZEn7f/kL3jnt84v0zN68zMBpvZ0/57JBJ9PyV6rcXFsruZTfRfa+vM7E0zG5GgXJ19XC2uj2M0LmBv/35s7JPqOzf++mwzu9LMvvXPTbF57/sTE5SNPQd9/ffGSv8aTzGzw+t67iKSeqpJFJGUMbMuwJHATOfcJ2ZWDFwCnAs8naD8LsBbQCHwJjAeL6k8GvjIzI5xzr2e4FCXAgcCrwDvAW39/fUDPgK6A+8CTwK9gBOAMWZ2nHPu1Zj9PAycAnwPPAKU+Y/9BXAIMDEm1t8A/wLWA88Cy4F9gCuAI8xstHNuTbLnqg5Z/jHb4TXrzAKOA+4ChgAXxJX/FzAN+ACviV8H4DDgUTMb4pz7cx3HeR7YFZgAvOg/l0nAGuAo4CXg65jya+oL2v/i/SyQDbyBd97bATsCl/tx1vf4VnjX8mBgBvAEUA7sC9wN7AacUd8+EngC2BPvORbjnZfLgc7AWZu5r7rsinf938f7UWR74FhgezM7Eu+1OB3vtdXH3/a2mfV3zpUk2N+dwF7AM3jX4GDg98CeZvYL51x5tGBDv3fqYmbdgC+AAuB1vNdODl5rgTPwmiCvqmcXLwJzE6yPnqvSuOM9CPwKWOg/pzXAKOAGYH8zO9A5V11fzP5+BgGf4r0nJuC9ngf68UzY1ONjPMymPyO+Bq4DrgXm+Y+JmhS3vwHAZ8BMvB/RcvFen5uyG/BH/3j3+s/lWGAvMzvIOffhZjynWGv82MfivUavi9k2t74HmveDy5t4CeZ0P6484HjgaTPbyTl3VYKH9gE+B2YDj+K9hk8CXjKzA5xz723hcxGRreGc06JFi5aULMCVeH0R/xizbioQAQbGlc0EfsJLBvaO29YdWISX+GTHrB/n7389sHOC47/pb786bv0eQDXel9l8f11bP64pQCjBvjrE/N0HqMD7Mjc0rtw//WM+ELd+kveRm/S5m+vv56O451wI/Oxv2yvuMQMS7CcLeAeoAnokign4FuiY4LFj/e1j64gxev73iVnXEa+JYWX8dfS394y774BJdez37thrAYSAB/1tRyV5HqPPcSpQGLO+tf96CwNdY9b39cs/XN/+4tbt4z/GAafFbYvGuzrB6/DP/rbfxa1/2F+/EugTsz4DLylzwJ9T+d6p53xelCjmmHOam+zrJ/Y1gZcElgGjEjx+fOx+4+LfKI46jvFWHef6qJhrNzZu21xgbsz9pD8j6nptJ3idOeCmLXytXVjHc5kFZCR4PfVNcIzo/sZt6tj1nRt/3R/9fb0OZMas78yGz7M96jgH18bt6+DovpJ9bWrRoqVhFzU3FZGUMDMDzsb7UvVIzKaH8QawOTvuIWPwflW/2zn3fuwG59xi4FagK4kHTHjAOfdV3PF74vWHnO8/NnZ/n+DVbhXi/foOGwbWqfBjJu4xsbUjp+MlX/c456bHFb0aWAecsbnN4erwR+dcRUwcq/FqUSCuBswl6CfkvL6f9+IlEnUNNvFn5/UvbAhn4tUy/Sv+OvrxLKzvweY1Jb0QWAr8n3MuHPPYMF7NlwNO28y4rvDPXXRf6/FqbjKAjZrobaGPnHOPx637n3+7Fvhr3Lbo+2KnOvZ3l3NuXvSOcy4CXIb3+vxVTLkGfe8kqSx+hXNuvXNuo/X1MbM2wKt4yewZzrnJMZt/h/djzq8S7PcGvB95Nvk68D8LDgTm4NV0xsb8El7NbzI25zMiWcuoXVuXrJ/wfpCKPX70uQzEqzVvbL/CO0eXuJjaXefccjZ8ZsV/7oNX2/qX2BXOuTfxPrtHpiZUEdkUNTcVkVTZD++L65vOuUUx658A/gaMNbM/O+eq/PW7+7d9LPEcYIP8223wfqmO9XmC8jv7tx/GHCPWu3jJ3s7AI865YjN7BTgC+NrMngc+BD5zzpXGPXaXmH3U4pwrMrOv8JoJDgW+SXDsZFUDnyRYP8m/3Tl2pZn1xmvuuD/QG6/pWqwedRwn0fnbUqP8281pwhdrMF6TwFnAn2zjrpfgJSjbbOZ+pyRYt8C/bb+Z+9qcYyz2b7+OTXh90fdFzzr2lyjJnm1mC4C+ZtbOeU2aG/q9U5+XgZuAe83sYLza+o+Bac45tzk7MrMQXlPaHYHLnXPPxWzL89evBH5fx+ugguReB9H3yUcJrgF476e9N7WTzfyMSNY3sT8CbYYP/R8N4k3Cey47k3zyu9X8ZH8gsCjBD2ew4bNy5wTbEr03wHt/7p5gvYg0AiWJIpIq5/q3D8eudM6t8r9oHYfXPCr6xTA64MUJm9hvfoJ1SxOsi/atqmv4/ej6djHrTsJLsk5lw6/75Wb2HPAH59yyrdj3llhZx5en6PONxoGZ9cf7wt8e74vrW3i1V2G8Zl1n4vURTCTR+dtS7fzbRfUVqkf0dTAIr09XXRK9DurkEvcPjdZ2hDZnX/VINJJndV3bnHPVfvLTqo79Latj/VK8Js9t8fqQNfR7p07OuXlmNhKvuechbKiJX2Bmf3PO/WMzdnevv4/7nXO3xW1rj1dr14n6XwfJiL5P6jufyUr2MyJZW/re29RzaVvH9lTZms/ENXU8phoNsCgSGL35RKTBmVknvAEzAJ6MGyHP4SWIsCGRhA1foo9yzlk9S6KmWYlqMKL761pHmN3iyuGcK3POjXPODcariTsdr0/g6WxIZrdo31uoo1/bEi963Nj9X4KXLPzaObePc+5i59yfnXPj8Gp76rS5NUCbsMa/ravWclOiz+mFTbwO+m19qAlFa2fq+hG1XYqOm0iXOtbHX/+Gfu/Uyzn3o3PuJLzX2wi8vscZwF1m9utk9mFmlwO/wRvYKH4Aptjn9NUmnlPCKsY69rWp87lJm/EZkfQut+AxkPxrA+p/TbfbwuPHa6zPRBFpJEoSRSQVzsTrszcVb+CORMsK4AB/BFLwJt2GhutLE+1n9QszS/TlaF//9stED3bOLfD7lx2M1/TxF7ZheP/ovveJf5yZtcPrY1YO/LglgcfIxBtkJ170uLF9yQb6t88nKL/JpnR1iNZibk5NW/Q6HrqFx5yOP4KlP8ppYyvyb3vFbzBv6onBjRjLRtfNrzHuhTdoyBp/dUO/d5LinKt2zk11zt2CN+InbPhxqE5mdjxe/8xvgBMT1ZY7b7TXH4BtzaxwK0ON/SxI9FreZ0t2uonPCPCSs4aqpY73C0s8Fcw+/m3sZ0Odr2nq7o8bhpomwZvknFuHN6BWD38k2Xj1ft6KSPpRkigiqRAdnOB859zZiRbgfmoPYPMS3peMC8zssEQ79ecFy0smAH+AlLfxmlr+Pm4/u+E1FysCXvDXdfLXx2sNtMFr+lTpr3sMb7TQi8xsYFz5G/AGbnlsC/saxbs5dgAc/wvzn/y7/40pN9e/3Sf2wX6/sUSDRSQjOhBH7814zP/wRn39rZntFb/RH0SkTv6AF3fj1Tz8w8zi+1VG574cthkxJc3/sjsdGB17DP/L8h1s3M8zlX5nZn1iYsgAbsP73x177Rv0vVMfMxvpT20TL7qu3r55ZjYKb5qDxcDh/vmuyx14PzY95P/4Er+v9v7UH/WK+SzohzcoUuw+jiLJH1E28zMCvPdPosSsIQwCzo+LL/pcfsJrch4V7Xd6Tlz57fEGB0pkS977D+F9pt8Wm1yaWUe8kXyjZUSkCVCfRBFpUOZNBD0E+M45V9+gGA/ijQR6lpld65yrMrNj8ZpGvmZmn+DNN1aK90VrV6A/XvKQ7CAR5+ENqnGbmR2EN7BIdJ7ECHBWzJfUHsBkM/sR79fuBXjJ3uF4Taj+ES3rnJtrZr/H61P1pZk9g1czujfeQAvT8fotba0leP0Ivzezl/H6rh2Pdw7+6Zz7IKbsP/FGO33WH1BjEbAdXp+vZ/D6Um2uT/HO9e/95DTaD+pu51zCZmPOuZVmdipe07v3zGwC3hQbBcAOeOd/U01Fb8AbtOQ8vDkn3/WfT2e8L8ej8V4707bgOSXjNrzX58dm9iwb5mhshVf7tWOKjhvvY7wBUp7Ga6Z3sH/sqcSM2Jui905dTsVLRt/HS0aK8AaoOgJvIJm/b+LxD+HNq/gZcHaCAWnWOOf+7j+vh8xsOF4y9LOZRUe8LMR7De2Flyyfl0TcF+C9nv/ufxZ8g1f7fgzeHJFHJLGPpD8jfO8AJ/t9sKfiJZEfxL1vt9QbwO1mdmjMczkW77X667hBbV7Cq+k8xf+R5jO85O8of9tGE937sZ8AjDez1/EGi5rnnHu0npj+hteC4CjgG/9xef5+OgO3Ouc+2sLnKyKNzaXBPBxatGhpPgvetAIOuDiJstG5y46JWdcZryna93hfaEvwvuA8h9fvJ3b+rXHEzdOX4Bg98CZvn4f3K/9KvAm0d40r1w64Bm8UvkV4X3iX4I0WeApgCfZ9kP8civzyP+F9eW+XoOwkNn+exLl4A0LcGxPTj8DFdcSzhx9/Ed40HB/hNf/bhy2YC80vcwjel+sSNsxp1ndT5x/YFm+Kh0X+eV+GN9riuXHlEs4lh1cjcQbel9XV/j4W+c/pKqBXkuexzudIPfP4Ab/Ga+5YgTcYyP14ffA22l9d59ff1pf6513c6PmzYV67/nhTfkzH+/K/CC8JK6hjXw363qnjGLvhvZ++8a9LGd7r/r/Adps6v2yYL6+uZW6CYx6ON03Gcv91sBSvduwvxM1TuonYB/rnYg3e/JCf4k0fkvB1wMbzJLZjMz4j/OvxBN5rPxz7GtnU66Ku127saw3vB6mJeDX36/A+i3atY1+9gKdjrtkXeEnlPiT+bAjhjWI7G6/VRK3Xafy5iVmfg/f+/N4/TvRz6JQteG9s9Py1aNHSeIs515DjFYiISEMws7kAzrm+wUYiIiIiLY36JIqIiIiIiEgNJYkiIiIiIiJSQ0miiIiIiIiI1FCfRBEREREREamhmkQRERERERGp0WLnSezYsaPr27dv0GGIiIiIiIgEYurUqSudc53i17fYJLFv375MmTIl6DBEREREREQCYWbzEq1Xc1MRERERERGpoSRRREREREREaihJFBERERERkRpKEkVERERERKSGkkQRERERERGpoSRRREREREREaihJFBERERERkRotdp5EkaYoHHZMnrqaWbNLGNQ/n1HDCwmFLOiwRERERKQZUZIo0kSEw45Lrv2WaTOKKa+IkJOdwbAhBdxx3Q5KFEVERESkwai5qUgTMXnqaqbNKKasPIJzUFYeYdqMYiZPXR10aCIiIiLSjChJFGkiZs0uobwiUmtdWXmEWXNKAopIRERERJojJYkiTcSg/vlkZGzcrHT+wlKccwFEJCIiIiLNkZJEkSaiujpCOOwlgwZkZnoJ41uTlvOnm6dRWlodYHQiIiIi0lxo4BqRJmDl6gpuu3cWAIcf2JWuXXIY1C8fcNxwx3Te/3Ql8xaWctPV29K7R16wwYqIiIhIk6aaRJE0F4k4brprBmuKqxixUzsuv3AwY0/qw+iRHRg9siP/vmMX+vbKY+6CUs699Es++WJV0CGLiIiISBOmJFEkzT3/6iI+/7KIgjaZ/On3Qzfql9irex4P/G1n9tmjIyXrw1xxw/c8/PQ8IhH1UxQRERGRzackUSSNzZ63nn89PBuAKy4cTMcO2QnL5eVlcsOVwzj3jL4A/OexuVx98w/qpygiIiIim61Rk0QzO8HMXjazRWZWYmZTzeyUuDJmZleZ2QIzKzOzD8xspwT7GmZm75hZqZktNrPrzSzUaE9GJMUqqyJc97cfqaxyjDmwK3vv0ane8mbGL0/sw63XbEd+60w+nLyKc//wFfMXlTZSxCIiIiLSHDR2TeIlQAnwf8CRwHvAE2Z2UUyZK4E/A7cAR/jlJ5pZ12gBM2sPTAQccBRwPXApcF0jPAeRRnH/I3P4ee56enbL5XfnDEz6cbuP6MB/7tiFfr29fornXPIlH3+ufooiIiIikhxrzPnVzKyjc25l3LongN2dc/3MLAdYBtzunLve394amAvc75z7k7/uj8DlQB/nXLG/7nJgHNA1uq4+I0aMcFOmTGmw5ybSkL74ajX/d813hDLgn7fuzLZDCjZ7H6Wl1dx01wwmfbISM/j1qX355Ym9E861KCIiIiItj5lNdc6NiF/fqDWJ8Qmi7yugs//3HkAB8EzMY9YDrwCHxjzmUODNuGTwKSAX2LshYxZpbGuLq7jx7zMAOOuUvluUIMKGfoq/+WU/AP7zuNdPcb36KYqIiIhIPdJh4Jo9gGn+30OBMDArrsyP/jZiyk2PLeCcmw+UxpUTaVKcc9x6z0xWrq5k+20KOP2E3lu1PzPjjBN61+6neOlXzF+ofooiIiIikligSaKZ7Y/Xp/Bef1V7oMQ5F44rWgTkmVlWTLk1CXZZ5G8TaZJem7iU9z9dSV5uiD9fMpTMUMM0DY3tpzhvYSnnXKp+iiIiIiKSWGBJopn1BZ4AXnLOPRyzKVEnSUuwra5ydXayNLNzzWyKmU1ZsWLF5gUskmILF5dx1wM/AXDJeYPo3jW3Qfffs3su9/9tF/YZ3ZH1pd58iv99cq7mUxQRERGRWgJJEs2sEJgAzAdOj9lUBLRJMJVFO6DUOVcVU65dgl23JXENIwDOuQeccyOccyM6dap/OgGRxlRdHeH6O36krDzC/nt24uB9O2/6QVsgLzfEDVd4/RTN4MEn5nH1TeqnKCIiIiIbNHqSaGZ5wKtAFjDGH5gmajoQAuLH+4/vgziduL6HZtYLaB1XTqRJePipeUybsY7OHbO59PxBmKVuBNJoP8Xbrt3e66f4mfopioiIiMgGjZokmlkm8CwwCDjUObc8rsgnQDFwQsxj8vDmS5wQU24CcLCZtYlZdxJQBryfgtBFUubbaWt55Nn5mMGfLhlKQX6rRjnuqOGF/OeOXejfp3VNP8WPPk80ALGIiIiItCSNXZP4T+Aw4Aag0MxGxSzZzrly4K/AVWZ2gT+wzbN+nHfH7Oc+oAIYb2YHmNm5eHMk3pHMHIki6WJ9aTU33D6dSAROObYXu2zfrlGP37N7LvfdtjP7ju7E+tIwV97wAw+pn6KIiIhIi5bZyMc7yL+9K8G2fsBcvCQxA/gj0AGYAhzonFsWLeicK/ITyHvw5lBcA9yJlyiKNBl33v8TS5aXM7h/Puec1jeQGPJyQ1x/xTY8/nw+9z8yh4eemMfMn0v48yVDaZ3X2B8RIiIiIhI0c65l1hiMGDHCTZkyJegwpAV758PlXHvrj2RnZfDg33ehb6/WQYfEZ1+u5tpbf6RkfTW9e+Ry89Xb0adXXtBhiYiIiEgKmNlU59yI+PWBzpMo0lItW1HObffOAuDCXw9IiwQRYLddCnnwTq+f4vxFZV4/xc/UT1FERESkJVGSKNLIwmHHX+6cTsn6avbYtZCjD+0WdEi19Ojm9VPc7xedKC0Lc+VffuDfj83ho89W8vBT8/j481WEwy2zBYKIiIhIS6AORyKN7KkXF/DVd2tp364Vf7x4SEqnu9hSebkhrrt8G4YMzOe+/83hf0/PJyMDnIOc7AyGDSngjut2IBRKv9hFREREZOuoJlGkEc34aR3/fmwuAFf9bgjt22UFG1A9zIzTjuvNr07pA0Ak4iWJZeURps0oZvLU1QFHKCIiIiKpoCRRpJGUl4e5/vbpVFc7jh3Tnd1HdAg6pKSYGfH1heUVEWbNKQkkHhERERFJLSWJIo3knodmM29hKX175XHBWf2DDidpg/rnk5NT+6MiOyuDQf3yA4pIRERERFJJSaJII/j481W8OGExmZnGtX/YhuzsUNAhJW3U8EKGDSkgNyZRbFvQilHDCwOMSkRERERSRUmiSIqtLqrk5n/MAODcM/oxqH/TqoELhYw7rtuBcZcNqxmJdW1xJetKqgOOTERERERSQUmiSAo557j5HzNYs7aKXXZox8lH9ww6pC0SChmjR3bgD+cPZvcRhZRXOJ5+aWHQYYmIiIhICihJFEmhF15fzKdTVtMmP5Orfz+EjIymP2XEmSd5o50+/+oiitdVBRyNiIiIiDQ0JYkiKTJn/nrueWg2AJddMJgunXICjqhhbDe0gJE7t6e0LMyzLy8KOhwRERERaWBKEkVSoLIqwvW3T6eyMsKh+3Vhv190CjqkBjX2ZK828dlXFqpvooiIiEgzoyRRJAX+89gcZs0uoVuXHH7/m4FBh9PgdhjWluE7tKNkfZjnX1VtooiIiEhzoiRRpIGEw46PP1/FTX+fzhPjF2IG11w6lNZ5mUGHlhLR2sSnX1rI+lLVJoqIiIg0F83z26tIIwuHHZdc+y0/TC+mvCICQNfO2QwbXBBwZKmz8/bt2Gnbtnz9w1rGv7aYM07oHXRIIiIiItIAVJMo0gAmT13NtBkbEkSANWurmDx1dYBRpd7YU7zaxKdeWEBpWTjgaERERESkIShJFGkAs2aX1EoQAcorIsyaUxJQRI1j+A7t2H6bAtauq+bFCYuDDkdEREREGoCSRJEGMKh/PqG4ORBzsjMY1C8/oIgah5nV9E18YvwCystVmygiIiLS1ClJFGkA2w8rwDlXcz83J4NhQwoYNbwwwKgax8id27PN4DasWVvFS28sCTocEREREdlKShJFGsBrby8lHIF+vfM4+/S+jLtsGHdctwOhkG36wU2cmXFWTG1iRYVqE0VERESaMiWJIlupqirCMy8tBOC3Y/sz9qQ+jB7ZoUUkiFG7jyhk8IB8VhVV8spbS4MOR0RERES2gpJEka301vvLWbGqkn6981pE89JEYmsTH3tuPhWVkU08QkRERETSlZJEka0QiTieeH4BAKce14uMjJZTexjvF7t1YGC/1qxcXcnrE1WbKCIiItJUKUkU2QqffLGKeQtL6dwxmwP36hx0OIEyM8ae5NUmPvrsfKqqVJsoIiIi0hQpSRTZCo/7tYgnH92TzEy9nfbavSP9euexfGUFE95dFnQ4IiIiIrIF9K1WZAt988NavvuxmDb5mRx+ULegw0kLGRkb5k189Jn5VFerNlFERESkqVGSKLKFnhjv1SIeO6Y7ebmhgKNJH/vs0Yk+PfNYsrycNyctDzocEREREdlMShJFtsDseev5+PNVZGVlcPzhPYIOJ62EQsaZJ/UG4JFn5lEddgFHJCIiIiKbQ0miyBZ40q9FHHNAV9q3ywo4mvSz356d6dk9l0VLypn4vmoTRURERJoSJYkim2nZinLeen85GRlw8jE9gw4nLWWGjDNP9GoT//fMPMKqTRQRERFpMpQkimymZ15eRDjs2Hd0J3p0zQ06nLR14N6d6d41hwWLynj3oxVBhyMiIiIiSUoqSTSzbcxsVMz9XDO7ycxeNLOLUheeSHopLqni5TeXAHDacb0Cjia9ZWZm8MsT/NrEp+cRiag2UURERKQpSLYm8Z/AETH3/wb8DsgBbjGzyxo6MJF09MJriykrC7PrTu0ZPKBN0OGkvYP37ULXztnMXVDKpE9WBh2OiIiIiCQh2SRxO+BTADNrBZwO/N45dwhwFfCr1IQnkj4qKsI89+oiAE5VLWJSWrXK4PTjVZsoIiIi0pQkmyS2Bor9v0f598f7978E+jRwXCJpZ8K7yyhaU8XgAfmM2LFd0OE0GYcd0JXOHbP5ee56PvxsVdDhiIiIiMgmJJskzsZLDgGOAb5yzkW/7XUE1jV0YCLpJBx2PPmCN+3Facf1wswCjqjpyGqVwWnHezWvDz81D+dUmygiIiKSzpJNEu8E/mJmXwAXA/+I2bYP8G0DxyWSViZ9soJFS8rp3jWHvffoFHQ4Tc7hB3ajQ2EWs2aX8PEXqk0UERERSWdJJYnOuQeBA4CngIOdc4/GbF4N/L3hQxNJD845nhjv1SKeckwvMkOqRdxc2VkZNaPBPvzkfNUmioiIiKSxpOdJdM594Jy73Tn3Ttz6cc651xo+NJH0MPXbNcz4qYT27Vpx2P5dgg6nyTryoG4UtmvF9J/WMXnq6qDDEREREZE6JJ0kmllnM7vFzN4xs5lmtq2//ndmtnvqQhQJ1uPPebWIxx/eg+zsUMDRNF05OSFOOdarTfyv+iaKiIiIpK2kkkQzGwn8BBwHzAUGANn+5m7ApakITiRoM39exxdfF5Gbk8Exh3UPOpwm7+hDu9OuoBXTZqxjytdFQYcjIiIiIglszsA17wKDgd8AsZ2yPgdGNnBcImnhcb8v4pEHd6OgTauAo2n6cnNCnHxMTwAeelK1iSIiIiLpKNkkcRfgn865CBD/rW4V0LlBoxJJA4uWlvHeRysIhYwTj+oZdDjNxrGHdaegTSbf/VjMV9+tCTocEREREYmTbJK4Fqhr3P/+wLKGCUckfTz1wkIiETho78506ZQTdDjNRl5eJif5Sfd/n5oXcDQiIiIiEi/ZJPEl4Doz6x+zzplZR+APwPgGj0wkQEVrK3lt4lKAmsFWpOEcd3gP8ltn8tV3a/n6+zVBhyMiIiIiMZJNEq8EioFpwAf+uvuAGUAZcE3DhyYSnOdfWURlZYQ9di2kf5/WQYfT7OS3zuTEo3oA8PDTqk0UERERSSdJJYnOuSJgFHABMA+YCMzBSx5HO+fWJXtAMxtoZveb2TdmFjazSQnKzDUzF7csTVBumD8lR6mZLTaz681McxTIViktC/P8a4sBOO243gFH03wdf0QPWueFmPL1Gr77cW3Q4YiIiIiIL+l5Ep1zlc65B51zpzrnDnLOneyc+7dzrmIzj7ktcBgw01/q8gSwe8xyWOxGM2uPl6w64CjgerypOK7bzHhEann17SWsK6lm+20K2HHbtkGH02wV5Lfi+CP82kT1TRQRERFJG0kniQ3oFedcL+fcCcAP9ZRb4pybHLN8Gbf9PCAXONY597Zz7j68BPESMytIUezSzFVXR3j6xYUAnKq+iCl34pE9yc0N8dmXRUybWRx0OCIiIiJCPUmima0ws+XJLske0J9GoyEcCrzpnIv9ZvkUXuK4dwMdQ1qYiR+sYNmKCvr2ymP0yA5Bh9PstS1oxXFjugOqTRQRERFJF5n1bLuXjedEbEy/MrOL8QbGeRu41DkX+y1yKPBu7AOcc/PNrNTf9kqjRSrNgnOOJ8YvALwRTTMyLOCIWoaTju7Jc68s4pMvVjPjp3UMGdgm6JBEREREWrQ6k0Tn3LhGjCPeS8BkYCGwDXAt8KGZbe+ci45w0R5Yk+CxRf42kc0yeepqZs9bT8fCLA7cu3PQ4bQY7dtmccxh3XnyhYU8/PQ8br56u6BDEhEREWnRkuqTaGa9zGyXOrbtYmYN2nnLOfc759yTzrkPnXMPAAcD3YGz4osmCqmO9ZjZuWY2xcymrFixoiFDlmbg8ee8WsQTj+pJVqsguuu2XKcc04usrAw+nLyKWXNKgg5HREREpEVL9pvwv4DT69h2KvDPhgknMefc93hzMsYmqkVAuwTF25K4hhHn3APOuRHOuRGdOnVq6DClCft+ejFf/7CW/NYhjjqkW9DhtDiF7bM42j/v/9O8iSIiIiKBSjZJHEVc/78Y7/nbG0NsDeF0vL6HNfwazdb+NpGkRfsiHnNYd1rn1ddVV1Ll1GN7kdXKmPTxSmbPWx90OCIiIiItVrJJYh71D2LTugFiqZOZbQcMAabGrJ4AHGxmsaNcnIQ30M37qYxHmpf5C0v5cPJKsloZxx/RM+hwWqyOHbI54mC/NvEZ1SaKiIiIBCXZJPE74JQ6tp1C/fMd1mJmeWZ2vJkdD/QAOkXv+9vGmNmTZnaame1rZr8F3gTmAw/H7Oo+oAIYb2YHmNm5wDjgjrhpMUQSCocdH3++inF/+xHn4OB9u9ChfVbQYbVopx3Xm1aZxrsfrmDegtKgwxERERFpkZJtV/dX4Hkzy8ZL1JYA3YAzgeP8JVmdgWfj1kXv9wMW+GX+jtfncBXwBnBVbPLnnCsys/2Be/Cmu1gD3ImXKIrUKxx2XHLtt/wwvZjyCm/qztnz1xMOO0IhTX0RlM4dsxlzYFdenLCER56Zx58v3SbokERERERanKSSROfcC2Z2JnAzXkLo8EYRXQSc7px7MdkDOufm+o+tz/5J7msasF+yxxaJmjx1NdNmbEgQAWbPXc/kqasZPbJDgJHJ6cf35pW3lvL2B8sZe0ofenXPCzokERERkRYl6XH+nXOPAr2AYcBe/m1v59yTKYpNJGVmzS6plSAClFdENP1CGujaOYfD9u9CJAKPPjM/6HBEREREWpzNmgzOeaY75z72b+sbzEYkbQ3qn08oo3aFdk52BoP65QcUkcQ6/YTehDLgzfeWsWhpWdDhiIiIiLQodTY3NbPzgWedcyv8v+vjnHP/atjQRFKnf9/WhCPebxwG5ORkMGxIAaOGFwYbmADQo2suB+/bhdffWcZjz87niouGBB2SiIiISItRX5/Ee4ApwAr/7/o4QEmiNBmPPTsf52CHYQWM3KWQQf3yGTW8UIPWpJEzTuzNG+8t4/V3lnHmSX3o2jkn6JBEREREWoQ6m5s65zKcc5/H/F3fEmq8kEW2zqIlZbz69lIyMuCKC4cw9qQ+jB7ZQQlimunVPY8D9+pMOOx47Dn1TRQRERFpLEn1STSzvcwsYWctM2ttZns1bFgiqfPQE3MJhx2H7NeVPr00cmY6++WJfTCDV99eyrIV5UGHIyIiItIiJDtwzXt4o5kmMtTfLpL2Zs9bz1vvLycz0zjr5D5BhyOb0KdXHvvt2YnqascT4xcEHY6IiIhIi5BsklhfO7x8oLQBYhFJuf88Phfn4MiDu9Gti/q4NQVnnugl86+8uYSVqyoCjkZERESk+atvdNO9gH1iVp1tZofEFcsBxgDfNXxoIg1r+qx1fPDpSrKzMvjlib2DDkeS1L9Pa/YZ3ZFJH6/kifELuPicgUGHJCIiItKs1Te66W7ARTH3TwCq48pUAtOByxo4LpEG98BjcwA47ogedCzMDjga2RxjT+rDpI9X8uIbSzjt+N50aJ8VdEgiIiIizVZ9o5ve5pzr5JzrBMwD9onej1l6OOf2d8592Xghi2y+r79fw+dfFtE6L8Rpx/YKOhzZTAP75bPX7h2prIzw1AvqmygiIiKSSpvsk2hmOcBPQPvUhyPS8JxzPPCoV4t40tE9aVvQKuCIZEuMPclrIvzC64spWlsZcDQiIiIizdcmk0TnXDkwAtBciNIkffZlEd9OK6Ztm0xOOqpn0OHIFho8oA2jR3agvCLC0y8uDDocERERkWYr2dFNXwaOTmEcIikRW4t42vG9aZ1XXzdcSXfR2sTnX1vM2uKqgKMRERERaZ6S/cb8JnCbmXUDXgeWAS62gHPu9QaOTWSrvf/JSmb+XEKHwiyOG9M96HBkK20zuIBRwwuZPHU1z7y8kHNO7xd0SCIiIiLNTrJJ4mP+7bH+Es+h5qiSZsJhx38enwt4o2NmZ+sl2hyMPbk3k6eu5qkXFxKOOLYf2pZRwwsJheqbzlVEREREkpVskqif66XJeev9ZcxdUEq3zjkcfmDXoMORBrLNoALa5GeyrqSax55dQG7OIoYNKeCO63ZQoigiIiLSAJJKEp1z81IdiEhDqqqK8NAT3sv2V6f2oVWrZLvfSrqbPHU1lZWRmvtl5RGmzShm8tTVjB7ZIcDIRERERJqHzRrFw8wygd5ATvw259y0hgpKZGu9NnEpS5aV07dXHgft0yXocKQBzZpdQmVVpNa68ooIs+aUKEkUERERaQBJJYlm1gr4B3AmkF1HMXX4krRQURHm4ae8WsRfn9ZXTRCbmUH988nJzqCsfEOi2CrTGNQvP8CoRERERJqPZNvgXQMcDvwaMOBC4CzgHWAucEQqghPZEuNfX8zK1ZUM7p/P3rt3DDocaWCjhhcybEgBuTkbPr7CEdhmcJsAoxIRERFpPpJNEk8ExgHP+Pc/d8494pw7CPgIOCoFsYlsttLSah5/bgEA55zRl4wM1SI2N6GQccd1OzDusmGcfVof+vfJIxx23PvQ7KBDExEREWkWkk0SewEznXNhoBxoH7PtceC4hg5MZEs88/Ii1hRXsf023nx60jyFQsbokR0Ye3JfbrpqO7KyMnjzvWVMnro66NBEREREmrxkk8QlQDv/7znAXjHbBjRkQCJbqnhdFU++4NUinntGP8xUi9gS9Oyey9mn9QXgtntnUlpaHWxAIiIiIk1cskniJGBP/+9/A1eZ2RNm9l/gduClFMQmslkef34B60vD7LpTe3bevl3Q4UgjOvGongwZmM+yFRU88OjcoMMRERERadKSTRKvBh4BcM79HbgM6APsCNwNXJyK4ESStaqokudeWQTAuWf0DTYYaXSZIePKi4cQChnPv7aI735cG3RIIiIiIk1WUkmic26pc+77mPt3OudGO+d2cc5d4Zxbn7oQRTbtkWfmUVEZYc9RHdhmcEHQ4UgABvXL59Rje+Ec3HL3zI3mUhQRERGR5CRbkwiAmbUzs1+Y2QlmNtrM2qUoLpGkLV1ezktvLMEMzjm9X9DhSIDGntyH3j1ymbuglEeenhd0OCIiIiJNUlJJopllmtktwELgA+Bp4ENgoZndamatUhijSL3++9Q8qqsdB+7dmf59WgcdjgQoOyuDKy4aAsCjzy3gpzklAUckIiIi0vQkW5N4B/A74CZgGNDRv70Zrz/i7SmJTmQT5i8sZcI7SwllwK9O6Rt0OJIGdty2Lccc1p1w2PHXf8ykOuyCDklERESkSUk2STwDuMo5d5NzbrpzbrV/eyPeoDZnpC5Ekbo9+MRcIhE47MBu9OyeG3Q4kibOO7MfnTtmM/2ndTz78sKgwxERERFpUpJNEiPAD3Vs+x7QT/XSqMJhx7OvLOSdD1cQyoAzTugVdEiSRlrnZXLZBYMA+M9jc1m0pCzgiERERESajmSTxEeBs+vYdg7wWMOEI7Jp4bDjkmu/5e7//AyAmXHL3TMJq1mhxNh9RAcO2qczFZURbr1nJs7p9SEiIiKSjGSTxHnAKDP7wcxuNrP/82+nAbsBs83sfH/5berCFYHJU1fz/Y/FRPwZDqrDjmkzipk8dXWwgUnaufjsgbQraMXUb9fw2ttLgw5HREREpEnITLJcdGCaHsA2CbbfEfO3A/61NUGJ1GfW7BIqKmvPgVdeEWHWnBJGj+wQUFSSjtq1bcXF5wzg+tunc89DPzNqeCEdO2QHHZaIiIhIWkuqJtE5l7EZSyjVQUvL1iZ/45dYTnYGg/rlBxCNpLsD9+7MHiMKKVkf5o77fwo6HBEREZG0l2xzU5G08c20tQCEQoYZ5OZkMGxIAaOGFwYcmaQjM+PS8weRlxvig09XMunjFUGHJCIiIpLWkm1uKpIW5i8s5b2PVhIKwRUXDmb5qgoG9ctn1PBCQiELOjxJU1065fDbsf25/V+zuOO+WeyyYzsK8lsFHZaIiIhIWlJNojQpjz03H+fgsAO6cdgBXRl7Uh9Gj+ygBFE26ahDurHjtm1ZvaaKex6cHXQ4IiIiImlLSaI0GUuWlfPmpOVkZMDpx2leRNk8GRnGFRcOJquV8frEpXzxdVHQIYmIiIikpTqTRDPrbWZqjyVp4/HnFxAOOw7cqzM9uuUGHY40Qb175nHWKX0BuPXumZSVh4MNSERERCQN1VeTOAfYGcDM3jWzoY0TksjGVq6q4PWJSwA4/YTeAUcjTdkpx/RkUP98liwv5z+PzQk6HBEREZG0U1+SWAbk+X/vAxSkPBqROjz54kIqqxz77NGRfr1bBx2ONGGZmRlcedFgQhnwzMuL+GFGcdAhiYiIiKSV+kY3/Qq4y8ze9u9fZGZL6ijrnHNXNGxoIp41a6t4acJiAH55omoRZesNGdiGk47pxRPPL+CWu2fy4J270KqVumiLiIiIQP1J4jnAbcBRgAP2ByrqKOsAJYmSEs+8vJDyigi7jyhk8IA2QYcjzcSvT+nDB5+sZPa89Tz23PyavooiIiIiLV2dP50756Y7545wzg0CDDjaOdevjqV/44UsLcm6kmqef3URAGeepFpEaTjZ2SEuv2gwAP97Zj6z560POCIRERGR9JBs+6p+wNcNcUAzG2hm95vZN2YWNrNJCcqYmV1lZgvMrMzMPjCznRKUG2Zm75hZqZktNrPrzSzUEHFKehj/2iLWl4bZZYd2bDe0bdDhSDOzy/btOPLgblRXO265ewbhsAs6JBEREZHAJZUkOufmAREzO8nM7jazx/3bE82sviariWwLHAbM9JdErgT+DNwCHAGUABPNrGu0gJm1BybiNXU9CrgeuBS4bjPjkTRVVh7mmZcWAnCm+iJKipx/Vn86Fmbxw4x1PP/aoqDDEREREQlcUkmimXUGpgBPAmOA/v7tU8AXZtZpM475inOul3PuBOCHBMfKwUsSb3bO3eOcmwicgJcMXhhT9DwgFzjWOfe2c+4+vATxEjPTSKzNwEtvLGbtumq2HdKGXXZoF3Q40kzlt87kD+cPAuCBR+awZFl5wBGJiIiIBCvZ5qZ3AB2A3Zxz/Z1zu/v9EHfz19+R7AGdc5FNFNkDb7qNZ2Iesx54BTg0ptyhwJvOudjx65/CSxz3TjYeSU8VlRGefMGvRTypD2YWcETSnP1it47sv2cnyisi3HbvTJxTs1MRERFpuZJNEg8DrnDOfRG70r//R7xaxYYyFAgDs+LW/+hviy03PS6e+UBpXDlpgl6fuJRVqysZ1D+f3UcUBh2OtAC/P3cgBW0y+fyrIt54d1nQ4YiIiIgEJtkkMRtYV8e2dUBWw4QDQHugxDkXjltfBOSZWVZMuTUJHl/kb5Mmqro6wuPPzwe8eRFViyiNoX27LC46ewAA//jPz6wuqgw4IhEREZFgJJskTgauMLPWsSv9+1f42xtSorZelmBbXeUSthUzs3PNbIqZTVmxYsVWhiip8tak5SxdXkGfnnnsvXvHoMORFuSQfbswcpf2rCup5s77fwo6HBEREZFAJJskXoo3KukCM3vKzO4ysyeBBcAwf3tDKQLaJJjKoh1Q6pyriinXLsHj25K4hhHn3APOuRHOuRGdOm3OWDvSWMJhx6PPebWIZ5zQm4wM1SJK4zEzLr9gMLk5Gbz38Qo+nLwy6JBEREREGl2yU2B8DQwCHgA6AQcCnYH7gEHOuW8aMKbpQAgYGLc+vg/idOL6HppZL6B1XDlpQiZ9soIFi8ro1iWHA/buHHQ40gJ17ZzDb37ZH4Db/zWLdSXVAUckIiIi0riSrUnEObfSOXelc25/59ww//Yq51xD/9T+CVCMN+0FAGaWhzdf4oSYchOAg82sTcy6k4Ay4P0GjkkaQSTieOQZrxbx9ON7kRlSLaIE45jDurPd0AJWrq7knw/PDjocERERkUaVdJLYUMwsz8yON7PjgR5Ap+h9M8tzzpUDfwWuMrMLzGx/4Fk/1rtjdnUfUAGMN7MDzOxcYBxwR9y0GNJEfPLFKn6eu55OHbI4dP+uQYcjLVgoZFxx0WBaZRqvvLmEL78tCjokERERkUbT6EkiXjPVZ/1lFF6fxuj9aPvCvwI34k2v8SrevIkHOudqxqV3zhUB++M1TX0FuA64E7i2UZ6FNCjnHP972qtFPOXYXmS1CuKlKbJBv96tOfOkPgDccs9MysvjB1wWERERaZ4a/Zu4c26uc87qWOb6ZZxz7kbnXE/nXK5zbk/n3FcJ9jXNObefX6abc+7PCabOkCZgytdF/DhrHe3atuLIg7oFHY4IAKcd14v+fVqzaEk5Dz05N+hwRERERBqFqmskLURrEU86qic5OfED24oEo1WrDK68eDAZGfDUiwuZPquu6WJFREREmo9NJolmlm1mV5vZjo0RkLQ83/ywhq9/WEt+60yOHdM96HBEahk2uIATjuxJJAI3/2MG1dWRoEMSERERSalNJonOuQrgahLPSSiyxcJhx8efr+Kmu2YAcNyY7rTOyww4KpGNnX1aX7p1yeHnuet5YvyCoMMRERERSalkm5t+BgxPZSDSsoTDjkuu/ZZrbpnGoiXlAHz9w1rCYRdwZCIby80JccVFgwH475PzmLegNOCIRERERFIn2STxcuC3ZnahmfU3s9b+VBY1SyqDlOZn8tTVTJtRTEXlhqZ7M39ex+SpqwOMSqRuI3Zsz5gDu1JV7fjr3TOIRPSDhoiIiDRPm1OTOAD4BzALb7L7dXGLSNJmzS6hvKJ2367yigiz5pQEFJHIpl3wq/50aJ/Fdz8W88KExUGHIyIiIpISyXYA+xWgn82lwQzqn08oZFRXb3hZ5WRnMKhffoBRidSvIL8Vl5w3kKtvnsZ9/5vD6F070LVzTtBhiYiIiDSopJJE59zDKY5DWphdd2qP2Yb7uTkZDBtSwKjhhcEFJZKEvffoxD57dGTSJyv52z9ncdu122GxL2YRERGRJm6zhpI0s2F4A9j0Ah5yzi01s4HAMuecmpxK0j7/ejVVVY7C9q045rDuDO7fhlHDCwmF9GVb0t//nTeIKd+sYfLU1bz9/nIO2qdL0CGJiIiINJik+iSaWb6ZPQN8D/wHuAGITmh3E3BtasKT5uqlCUsAOPnoXpx1cl9Gj+ygBFGajA7ts7jw1/0BuOuBnyhaWxlwRCIiIiINJ9mBa+4A9gD2B9oAsd/mXwcOaeC4pBlbvLSMyVNXk9XKGHNA16DDEdkiYw7oyvAd27F2XTV3PfBz0OGIiIiINJhkk8RjgSucc+8B4bht84A+DRqVNGsvv7kE52DfX3SmbUGroMMR2SJmxuUXDiYnO4OJHyznky9WBR2SiIiISININknMBer6BtSGjRNHkYQqqyK8+vZSAI45rFvA0YhsnR5dcznn9H4A/O2fs1hfWh1wRCIiIiJbL9kk8Qvgl3VsOx74pGHCkebu/U9WsmZtFQP6tmbbIQVBhyOy1Y4/ogfbDG7D8pUV/OvhOUGHIyIiIrLVkk0S/wQca2YTgbPx5kw8zMweBU5AA9dIkl70JyA/5rDumjZAmoVQyLjyosGEQsaLExbzzQ9rgg5JREREZKsklSQ65z7CG7QmG7gHb+Ca64D+wAHOuS9SFqE0G7PnreebH9aSmxvioL07Bx2OSIMZ0DefX57QG4C/3j2TispIwBGJiIiIbLlkaxJxzn3snNsTKAB6Am2cc6Odcx+nLDppVqK1iAfv04W8vM2aolMk7Z1xYm/69spjwaIyHn5qbtDhiIiIiGyxpJPEGOVAFVDWwLFIM1ZaFuaNd5cBGrBGmqesVhlcefFgzOCJ5xcw8+d1QYckIiIiskWSThLN7DAz+wQvSVwKlJvZJ2Y2JmXRSbMx8YPllJaF2X6bAgb0zQ86HJGU2G5oW447vAfhiNfstDrsgg5JREREZLMllSSa2W+AV4AS4Hd4g9X8zr//sr9dJCHnHC++vmHAGpHm7Nwz+tG1czYzfy7h6RcXBB2OiIiIyGZLtibxKuAB59xBzrn7nHPj/duDgH8DV6cuRGnqps1cx8zZJbQraMU+ozsFHY5ISuXlhrj8gsEAPPjEPBYsLg04IhEREZHNk2yS2AEYX8e254HChglHmqNoLeJhB3Qhq9WWdIMVaVpG7lLIIft1obIywlU3/sB/n5zLx5+vIqzmpyIiItIEJPuN/T1g7zq27Q180DDhSHNTvK6Kdz5aAcBRh6ipqbQc55/Vn8yQMWd+KQ8+MY9xt03jkmu/VaIoIiIiaa/OeQjMbFjM3X8A/zGzDsCLwHKgM3AMcChwdgpjlCbs9XeWUlkZYeQu7enRLTfocEQazY8z15GRAYS9+2XlEabNKGby1NWMHtkh0NhERERE6lPfZHXfA7E/eRvwG39x/v2oN4BQg0cnTVok4nhxwhIAjjlUtYjSssyaXUJVde1aw7LyCLPmlChJFBERkbRWX5K4b6NFIc3S1G/XsHBxGZ07ZrP7rvpSLC3LoP755GRnUFYeqbV+5aqKgCISERERSU6dSaJz7v3GDESan+iANUce3I3MkG2itEjzMmp4IcOGFDBtRjHlFRFCGUZ12Ktdz8zM4MJfD9D7QkRERNJSfTWJCZlZJpAVv945p3HepcbKVRV89NlKQiHj8IO6Bh2OSKMLhYw7rtuByVNXM2tOCYP65bOmuJLb7p3Fc68sYuHiMq67fBta5232x7CIiIhISiX17cTM2gI34w1U04na/RGj1CdRarzy1hLCEdhndAc6FmYHHY5IIEIhY/TIDrX6IPbslstVN/7A5KmrOe+yr7j1mu3p1iUnwChFREREakv2J+yH8aa6+DfwE1CZqoCk6asOO15+UwPWiCSy47bteOD2Xbjihu+ZM7+Ucy79kr/+aVu2G9o26NBEREREgOSTxP2B3zjnnkxlMNL0hcOOhx6fy4pVlXQszGLHbfXFVyRej265/OvWnbnmlml88XURF1/1DVdePISD9ukSdGgiIiIiZCRZbj6gPodSr3DYccm13/LY8/MBWFtcxaXjvtPk4SIJtMnP5LZx23P0od2prHJcf/t0Hnx8Ls7p/SIiIiLBSjZJvBz4k5n1TmUw0rRNnrqaH6YXE/FH/K+qdjWTh4vIxjJDxqW/Hcjvzx1IRgb896l5jLvtRyoqwkGHJiIiIi1YUkmic+514EPgJzObaWafxy+pDVOaglmzSyivqD0nXHmFN3m4iCRmZhx/RA9u+fN25OWGeOfDFVx09TesKlLXbxEREQlGUkmimf0N+D3wFfAF8EOCRVq4vr3yNlqXk53BoH75AUQj0rTsPqID9922M107ZzNtxjrOueRLftIPLCIiIhKAZAeuORu42jl3cyqDkaZt3fpqAMyfICUnO4NhQwoYNbwwwKhEmo7+fVrz79t34Y83/sD304v57RVfM+4P29SaQkNEREQk1ZJNEkuBqakMRJq+lyZ4016ccEQPCgpaMahfPqOGFxIKJZpWU0QSad8ui7tu3JG//mMGb7+/nCv/8j0X/moAJx7VAzO9l0RERCT1kk0S7wLONbO3nYbeaxThsGPy1NXMml3CoP7pn2z9OLOY6T+to6BNJr/5ZT+ys0NBhyTSZGVnZXDNpUPp0zOP/zw+l7sf/Jl5C0u55LyBZGYmO96YiIiIyJZJNknsCOwGzDCzScCauO3OOXdFA8bVokWnkvhhejEVlZGaZpt3XLdD2iaK419bDMCYA7oqQRRpAGbG2JP70KtHLjf+fQYvv7mERUvLuOHKYRTktwo6PBEREWnGkv1J+nigGmgFHAickGCRBjJ56mq++7GY8ooIzkFZeSStp5JYW1zFOx8uxwyOPrR70OGINCv779mZu2/akcJ2rZj6zRp+84evWLi4LOiwREREpBlLdgqMfptY+qc60JZk1uwSKiubzlQSr01cSmWVY7ddCunRLTfocESanW2HFPDA7bswoG9rFiwq49w/fMlX360JOiwRERFpptS5JQ0N6p9PZlyz0nSdSiIScbzwutfU9JjDVIsokipdO+fwr1t2Yo9dCyleV83/XfMtr01cGnRYIiIi0gwl1SfRzM7fVBnn3D+3PhwBGDW8kDZtMilaUwVAZqal7VQSn325miXLyunWOSct4xNpTvLyMrn56u3458OzefrFhdx81wzmLSzlvF/2IyMjPfsri4iISNOT7MA199SzLTraqZLEBhIKGf1651G0Zi0AHQuz0nbQmhf8AWuOOrRbWsYn0tyEQsZFvx5A7x653HHfTzzx/AIWLCrlmku3ITdHg0aJiIjI1ku2T2JG/AIUAqcA3wDDUhlkS7RmbXXN30uXV7B0eXmA0SS2eGkZn05dTatMY8yBXYMOR6RFOeqQ7tx+3fbkt87kw8mruOCKr1m+siLosERERKQZ2OI+ic65Nc65p4H7gPsbLiQws7Fm5hIs58WUMTO7yswWmFmZmX1gZjs1ZBxBKlpbCcDO27cF4P1PVwYZTkIvvbEE52C/PTvTvm1W0OGItDgjdmzPA3/bmZ7dcpk5u4RzLv2S6bPWBR2WiIiINHENMXDNHGBEA+wnkf2A3WOW8THbrgT+DNwCHAGUABPNrMlXaYXDjrXFXn/Eww/sBsBzryzi489XEQ67+h7aaCoqI7z61hJAA9aIBKl3zzzu/9vO7LRdW1atruSCK79m0scrgg5LREREmrCtShLNrBtwKV6imApfOOcmxyzL/ePm4CWJNzvn7nHOTcSbq9EBF6YolkZTvK6KSAQK8kO84idiy1dWcO2t07jk2m/TIlF876MVrF1XzeD++Ww7pE3Q4Yi0aG0LWnHn9Tsw5sCuVFRG+NNfp/Hos/NxLvjPChEREWl6kkoSzWyFmS2PW9YAC4E9gT+kMsgE9gAKgGeiK5xz64FXgEMbOZYGt3qN19Q0JyeTGT9taDpWXhFh2oxiJk9dHVRoNV54fREAx47pjpkGrBEJWqtWGVx50WDOP6s/ZnD/I3O48e8zqKyKbPrBIiIiIjGSHd30XjaMYhpVjpckvuGcW9WgUW3ws5l1AH4G7nDORfs+DgXCwKy48j8CJ6Uolkaz2p/6IpThJYaxyisizJpTwuiRHYIIDYAZP63jhxnryG8d4oC9OgcWh4jUZmacemwvenbL5frbf+SNd5exeGkZN121He3atgo6PBEREWkikkoSnXPjUhxHvCV4/Q0/B0J4o6jeZ2Z5zrk7gfZAiXMuHPe4IiDPzLKcc5WNGnEDKvJrEjt1zGZNcRVl5RsSxZzsDAb1yw8qNABeeN2b9uKw/buSoyH3RdLOXrt35J+37MQVN3zPt9OKOfcPX3LrNdvRt1froEMTERGRJqAhBq5pcM65N51zf3HOveWcm+Cc+yVe09I/mVk05kSdbayebZjZuWY2xcymrFiRvgM7FPk1iYP65TNsSAHZWd5TNoNhQwoCnbS+uKSKt99fDsDRGrBGJG0NHtCGf9++C0MG5rN4aTnnXfYVX3wVfFN1ERERSX91Jolm9u5mLO80QqzP4c3N2BevxrCNmcVXY7UDSp1zVYl24Jx7wDk3wjk3olOnTqmMdatEp78obJ/FHdftwO/PHQBAQZtM7rhuh0AnrZ8wcRkVlRF23ak9vXvkBRaHiGxaxw7Z3HvzTuyzR0dK1of5w7jvaloCiIiIiNSlvprEVUksWcA+/tJYHDAdrxnqwLhtQ/1tTVq0T2L7dlmEQsbB+3mzepSUVAcWUzjs+OizlfzvmXkAHHVIt8BiEZHk5eSEuP6KYZxxQm/CEbj9X7P4+wM/UZ0GoySLiIhIeqqzT6Jz7oS6tplZb+AK4HBgJXBnw4e2keP8Y83D67NYjDftxV/8mPLw5kt8oBFiSak1fp/EwnbeQBNZrTJo364VRWuqKFpTSccO2Y0aTzjsuOTab/nux2IqK73+keNfX8yeozoGWqspIsnJyDB+88t+9O6Zyy13z+S5VxaxcHEZ112+Da3zkh2/TERERFqKzeqTaGYDzexBvFFFjwT+CPRxzt3ckEGZ2fNmdoWZHWpmh5vZo3ijll7vnIs458qBvwJXmdkFZrY/8Kz/fO5uyFiCEK1JbNc2q2ZdJz8xXL6qotHjmTx1NdNmbEgQAX6cmR5TcYhI8g7dryt3/WUH2rbJZPLU1fz28q9Zsqw86LBEREQkzSQ7T+K2ZvYE3hQT+wK/AwY45/7unCtLQVwzgF8Bz+Mlf8OAXzrnYhPAvwI34iWqr+LNm3igc25ZCuJpVDV9EtttGLK+c0cvSVyxsvGTxFmzS2qNsAobpuIQkaZlx23b8cDtu9C3Vx6z563n3D98yffT1wYdloiIiKSRepNEMxtuZuOBb4GdgbOBQc65+1I5xYRz7irn3BDnXJ5zLtc5N9w592hcGeecu9E519Mvs6dz7qtUxdRYnHM1U2C0b5egJjGAJLFXj9yN1qXDVBwismV6dMvlX7fuzK47tadoTRUXX/UNb01q8r+viYiISAOpb3TTCXjzFPYDTnbObeOc+1+CuQmlAZWWhamscuTmZJAbMwdhTU1iAM1Nv/5+DeBNwWEGuTkZgU/FISJbp01+JreN256jD+1OZZXj+tun8+Djc3FOA9qIiIi0dPWNWHCwf9sLuNfM7q1vR865zg0WVQu2crWXBGZmZvDx56sYNbyQUMhiahJTVoGb0PfT1/LihCVkZMDvzhnAuvVhBvXLr4lLRJquzJBx6W8H0rdXHv/4z0/896l5zF9UylW/G0J2dvwMQyIiItJS1JckXtdoUQjgjSJ6/d+8GTzWlVQz7rZpDBtSwB3X7UDnjl7T08asSayqinDrPbNwDk4/vjfHHd6z0Y4tIo3DzDj+iB706JbDtbf+yDsfrmDJ8nJuvno7OrTP2vQOREREpNmpbwoMJYmNbPLU1cyZv77mfll5hGkzvFFEe/f0+gU2ZpL45AsLmD1vPT275TL2pN6NdlwRaXy7j+jAfbftzOXXf8e0Ges499IvueXP2zFQfY9FRERanM2aAkNSa9bsEiqravcHio4i2qlww+imjdFnaMHiUh5+ah4Al10wSE3PRFqA/n1a8+/bd2G7oQUsW1HBb6/4mk++WBV0WCIiItLIlCSmkUH988nMrN3PLzqKaE5OiII2mVRVO9YUV6U0Ducct907i8oqx6H7dWH4ju1TejwRSR/t22Vx1407cuDenSkrC3PlX77n6RcXakAbERGRFqS+PonSyEYNL6SwXauawWniRxHt1CGb4nXVrFhZQfu2qesrNOGdZXz57RraFbTigl8NSNlxRCQ9ZWdlcM2lQ+nTM4//PD6Xux/8mbkL1rP7iEJmzytlUH8NXiUiItKcKUlMI6GQsdN27Xhr0nL23r0jhx3QtdYXsc4ds/l57nqWr6pg8IA2KYmhaE0l9zz0MwAXnT2Adm1bpeQ4IpLezIyxJ/ehV49c/nLndF55aymvTVyKc14Lh+igWkoURUREmh81N00zxeuqARhzYFdGj+xQ6wtYdBqMFZuYBiMcdnz8+SoefmoeH3++inDY1bs+1t0P/kzxump23ak9B+2jWU1EWrr99+zMuWf0AyASAedqD6olIiIizY9qEtPMWr+/YduCjWvwOneMzpVY9win4bDjkmu/ZdqMYsorIjW/+N92zfZcdv13G62P1gSEw45HnpnHW5OWk5lpXPLbgZiphkBEoKIigpmXIEaVlUd49uWFDBvchvbtNFWGiIhIc6IkMc1EB6VplyBJ7OQnifVNgzF56mqmzSimrDwCeF/kpn6zhqPP/JR166trvuSVlUf45vu13HDnjwzp34ZX317C/IVlNfv52z9nqSmZiADeoFo52Rk1nytRU75Zw7FnTWa/PTtz3OHdGTa4IKAIRUREpCEpSUwz9dYkdvB+rV9RT03irNklG32RAyguqd5oXXXYMfH9FUx8f0Xt9dWupinZ6JEdNit+EWl+Rg0vZNiQglotEXp2z6Vzx2w++WI1b763jDffW8bQgW047vDu7LdnZ7Kz1JtBRESkqVKSmEYqqyKUloUJhYzWeRvPSxitSVxeT03ioP75hEIQDm9Yl5OdwSH7dWHCO8uoqNyQQLbKNPbavSNLlpczbca6WvuJzs+oJFFEQiHjjut2YPLU1cyaU8KgfhtGN12yrJwXJizm1beWMP2nddz49xnc+9BsDj+oK0cf2p2unXOCDl9EREQ2k37qTSPFMU1NE/UH7FwzcE1FnXOW7bRt25ompYY3jca2Qwu4+OyBbLdNAbk5GZh563fYti3XXLoNZ57Yh9yc2i+F6PyMIiLgJYqjR3Zg7El9ag2q1a1LDueP7c8L/x3FH383hMED8llTXMVjzy3gxHM+4483fs+Ub4o0z6KIiEgToprENLKmnqamAHl5mbTOC7G+NMy69dUU5G9c7uMvVhGJQO8euRy0b5dav/jXVROQqClZ7PyMIiKbkp0dYswBXTls/y78MGMd419bxLsfreDDyav4cPIq+vTM49gx3Tlkvy60ztO/HhERkXSm/9RpZEN/xLovS6cO2awvLWXFyoqESeKb7y0D4PgjenDsmB61tkVrAuKbkNaXQIqIbA4zY7uhBWw3tIALfzWAl99awksTFjNvYSl33v8T9z0yh0P368KxY7rTt1froMMVERGRBJQkppFN1SSCNw3G3AWlLF9ZwYC+tZuDrlxdwRdfF5GZaey/5+bNcVhXAikisqUK22cx9qQ+nH5cLz78bBXPv7qIr79fy/jXFjP+tcUM37Edx43pwR4jO5CpH6VERETShpLENLK2nukvojpG+yWuqtxo28QPlhOJwOiRhfUmmiIijSkzM4N9R3di39GdmD1vPeNfW8Qb7y5j6jdrmPrNGrp0yuboQ7tz+EFdad9Wcy6KiIgETQPXpJH6pr+Iqm8ajDffWw7AIft2SUF0IiJbr3+f1vzh/MG88PDuXHzOAHp2z2XZigruf2QOx501mRvvnM70Wes2vSMRERFJGdUkppG1xd5chvUliXVNg/Hz3BJmzS6hTX4mu++qJqMikt7a5Gdy4pE9Of7wHnzxdRHPv7qIT6esZsK7y5jw7jKGDWnDcWN6sO8vOpHVSr9nioiINCYliWlkTRLNTTt33DANRqzogDX76QuViDQhGRnGbrsUstsuhSxaWsaLry/m1beXMm3GOqbNmM7dD/7MEQd14+hDu9Glk+ZcFBERaQzKJtJIMs1NO/l9Epf7SWI47Phw8kpenLAEgAP33rwBa0RE0kWPrrlc8KsBvPDfUVx50WAG9c9nzdoqHn12Piec/RlX3/QDX36rORdFRERSTTWJaSSpPonRmsRVFYTDjkuu/ZbvfiymsjKCAf99ch53XN9W01eISJOVkxPi8IO6MebArnw/vZjnX13Mex+v4P1PV/L+pyvp2yuP4w7vwcH7dCZPcy6KiIg0ONUkppFkmpvm5YbIzDTWl4a5/5HZ/DDdSxABHDBtZjGTp65ujHBFRFLKzNh+m7aMu2wbnn9oN359ah86FGYxd0Ept/9rFkePnczf7/+J+QtLgw5VRESkWVGSmEY2VZMYDjsuHfcd4bDX1OrJFxZSXhGpVaa8IsKsOSWpDVREpJF1LMzmrFP68vyDu3Hd5duw47ZtKS0L89yrizj1t1/wf3/+lo8+W1nz+SgiIiJbTu100sT69dVUVEYIhYyp3xax+/AOGzUZnTx1NdNmFBPtjpOoW05OdgaD+uU3QsQiIo0vMzOD/ffszP57duanOSWMf20xb763jC++LuKLr4vo2jmbYw7rzuEHdtN8sSIiIlvIWuoAACNGjHBTpkwJOgzAqyG88I9f892PxQDk5mQwbEgBd1y3Q61E8eGn5vHgE3M3Sg4zM41w2JGTnfhxIiLNWXFJFRMmLmP864tYtKQcgKysDA7YqzPHjenOkIFtAo5QREQkPZnZVOfciPj1qklMA5OnrmbmzxuaiJaVR5g2w+tbOHrkhjkPB/XPJyc7g7LyDU1Mc7KNk4/uRWYrrwZx1PBCJYgi0qIU5LfipKN7csKRPfjsy9WMf20xk6eu5vWJS3l94lK2G1rAsWO6s89oTREkIiKSDCWJaWDW7BIqKhP3LYxNEkcNL2TYkAKmzSimvCJSU3N41il9lRiKSIuXkWHsPqIDu4/owMLFZbwwYTGvvb2U76cX8/30Yu5+8GeOPLgbRx3SvWakaBEREdmYmpumgY8/X8W1t06rNQhNbk4G4y4bVitJBK9p6uSpq5k1p0Q1hyIim1BeHubt95fz3KuL+HnuegBCGbDn7h05bkwPdtquLWb6DBURkZapruamShLTQHS+w/gaQvUtFBFpGM45vp1WzPjXFjHpkw2joPbv05pjx3TnoH26kJcbCjhKERGRxqUkMU46JYmgGkIRkcayclUFL725hJffWMKqokoA8luHOGz/rhwzpju9uucFHKGIiEjjUJIYJ92SRBERaVxVVRHe/3Qlz7+6qGZ0aYCRu7TnuDE9GDW8EPAGF5s1u4RB/fUDnoiINC9KEuMoSRQRkahZs0sY/9oi3pq0vGYgsa6dswmFjFWrK6moVFcAERFpfpQkxlGSKCIi8YrXVfHaxKWMf20xS5aVb7S9VSvjt2f254iDu5Gboz6MIiLStClJjKMkUURE6hIOO278+3TemrS8zjJdOmXTp1cefXrWXtq3a6URU0VEpEmoK0nUPIkiIiJxQiFj/z078+HklZSVb5ieKCMDOnXIZlVRJctWVLBsRQWff1lU67Ft8jO9hDEugezWJUfNVEVEpElQkigiIpLAqOGFDBtSkHB6IgcsWVbGvAWlzFtYuuF2YSnrSqr5fnox308vrrW/VplGrx559O6ZS9+eefTumUffXnn06pGnpqsiIpJW1NxURESkDps7PZFzjtVrqmonjv7t8pUVdT6ua+dsesc1W+3bK492bdV0VUREUkd9EuMoSRQRkcZUWhZm/qJS5i8sZe6CDbcLl5RRXZ34f3Gb/Ez69srbKIFU01UREWkI6pMoIiISoLzcEEMHtmHowDa11leHHYuXltVKHmObrn73Y3GteRxhQ9NVL2nMpU+v1vTpmUvvHnnkqOmqiIhsJSWJIiIiAcoMGb175NG7Rx6/2G3D+pqmqwvWM29hWa1+j8tXVjB73npmz1u/0f6iTVdj+z326ammqyIikjwliSIiImnIzOjQPosO7bPYZYf2tbaVllYzf1FZTdIYTSAXLilj6fIKli7feNTVgjbeqKu94/o9du2spqsiIlKbkkQREZEmJi8vk6GD2jB0UFzT1eoIi5eV1x40Z5F3W7wucdPVrFb+qKs91HRVREQ8ShJFRESaiczMjJqmq3vGrHfOsaqoMqbfYxlzF65n/sIylq+s4Oe56/l5buKmqzUD5sTM+xjfdLVmFNjZJQzqv+lRYEVEJL1pdFMREZEWLNp0da5f+xgdOGfB4jLC4cTfEaJNV/v0zKNn91wmfrCchYvLqKisPZ+kEkURkfTWLKfAMLNhwN3A7sAa4D/Adc658KYeqyRRRESkbtXVERYvLWde7JQdfhK5vnST/2YpyM+koE0rsrMzvCUrg5zsENlZGWT7tznRbTX3o9v9v7P9MlmhjfaRlZVBRoaSUBGRrdHspsAws/bARGAacBQwALgdyAD+FGBoIiIiTV5mZga9/YFu9hy1YX206Wq03+Mb7y5j2sx1Gz2+uKSa4pLqlMaYFU004xLPWslodqIyoZjkNVRrezRxjd1HVisLfGRYNekVkcbUZJNE4DwgFzjWOVcMvG1mBcA4M7vVXyciIiINyMzoWJhNx8Jshu/Yni6dchh32zTKyiM1ZXKyM7jkvEFsP6yA8ooIFRURKirCVFRGvPuVYX9dhPKKMOUVESorw/42b11lRYTySu9x0fWx+6is3LCk/jnjJYy1Es8NtZ7RxDMnO4OsrESJZkwymh1Xk1qz3ttvq8yNE9Jw2HHJtd8ybUYx5RVq0pvOlMxLvKb6mmjKSeKhwJtxyeBTwC3A3sArgUQlIiLSgowaXsiwIQUbJTAH79slpV+EIhFHZeWGpNJLIr0EtNxPPqOJaO0yYT85jU88Y/ZRUbt8ZZXz9xmBdamtHc3IYKNaz6qqCEuXlxPxewiVlUf46rs1nH/l13TqkEUow8iILgYZIe/vUAb+OiMj+nfIW29m/uOoeWwoZJgRs78N2zIyqH2c2Mf5f9c8Nub4ZnGxhPwYM2yTx7G4Y27YH4HX7CaiZF7iNeXXRJPtk2hmy4F/OufGxa1fD4xzzt1W3+PVJ1FERKRh1PxSPqeEQf2azi/lyQqHHZVV8Yln4hrOipqa0Q2JZnlFhMqK2jWl0YQ0Pnmtqm6a38saW63E0uIS1lCi9Rsno9H1tZPR2ol1bNK70XEyDIv5e9mKCr74uqjWgE+hkDFqeHu6d82l1lduF/vnhjuxZer6m2TK1ypeR/nERbaufB1lXB3PlySe76bK1z5mHWXrjGvLy9dxSWqVL1pbyex564nENHjIzclg3GXDGD2yA+mg2fVJBNrjDVYTr8jfJiIiIo0gFDJGj+yQNl96GlooZOSGQuQ2wryR4bDbqIbz8y+LuP+ROVTENK3NamWcdFRPBg1oQyTiiEQc4YjDRaj5OxLzt4vgr4suEHGOSNgR9stFIo6I2/B3OFzH+ogjEva+MCc6zobje9vqWh9x/t/hDbE5VzvOcAQiYecfi5oy0WPGfVVPO+Gw4+PPVwcdhqSR8ooIs+aUpP3nZVNOEiHxJ4PVsR4zOxc4F6B3794pDEtERERk84VCRl5uiLzcDQlpr+55fPzFqo2arJ19er9mVWObrGjC6GITydjkMzaZjd53tZPRuhLi2GR044S49vr4hPynOSW8PnFprdrgVpnGIft1oV/v1t6KmMsVe+Vim8/Wakm7ueVrlamjfB1l2JryJI6n7tgaqHzCuDYde8qfh3/7w4xiHn1uQa2+0znZGQzql594h2mkKSeJRUC7BOvbkriGEefcA8AD4DU3TVVgIiIiIg0lFDLuuG6HZt2kd3OYGZkhIM2efzjsWLikbKNk/g/nD26x16qlG75je77+Ye1Gr4lRwwuDDm2TmnKfxA+ARc65U2LW9QLmA0c65+oduEZ9EkVERESkITX3/rmy+dL9NdEc+yROAC4zszbOuegETScBZcD7wYUlIiIiIi1Rc++fK5uvqb4mMoIOYCvcB1QA483sAL+/4TjgDs2RKCIiIiIismWabE2ic67IzPYH7sGbE3ENcCdeoigiIiIiIiJboMkmiQDOuWnAfkHHISIiIiIi0lw05eamIiIiIiIi0sCUJIqIiIiIiEgNJYkiIiIiIiJSQ0miiIiIiIiI1FCSKCIiIiIiIjXMORd0DIEwsxXAvEY8ZEdgZSMeT2rT+Q+erkGwdP6DpfMfPF2DYOn8B0vnP3jpeg36OOc6xa9ssUliYzOzKc65EUHH0VLp/AdP1yBYOv/B0vkPnq5BsHT+g6XzH7ymdg3U3FRERERERERqKEkUERERERGRGkoSG88DQQfQwun8B0/XIFg6/8HS+Q+erkGwdP6DpfMfvCZ1DdQnUURERERERGqoJlFERERERERqKElMITMbZmbvmFmpmS02s+vNLBR0XM2BmQ00s/vN7BszC5vZpARlzMyuMrMFZlZmZh+Y2U4Jyuk6bSYzO8HMXjazRWZWYmZTzeyUuDI6/yliZseb2SdmtsrMys1shpn9ycyyYsro/DcSM+vhvw+cmeXHrNc1SBEzG+uf7/jlvJgyOv8pZGaZZnalmc0yswozW2hmd8aV0TVIATObVMfr35nZ7n4ZnfsUMrOTzexL/7N/kZk9Ymbd48o07WvgnNOSggVoDywGJgIHAucB64G/BB1bc1iAo4AFwLPAj8CkBGX+CJQBFwIHAK/jzU/TVddpq8//p8ATwInAfsDfAAdcpPPfKOf/N8CNwDHAvsAV/rm+R+c/kOvxBLDUfw/k6xo0yjkf65/vfYFRMUtnnf9GuwaP+ufuN8DewOnATXFldA1Sc+6Hxb3uRwFvASuATJ37lJ//I/3Pn3uA/f3X/lzgSyAjplyTvgaBn+jmuvgvjCKgIGbd5UBp7DotW3x+Y9+EzxGXJAI5wFrgmph1rf0P0L/ErNN12rLz3zHBuieAOTr/gV2TG4E1gOn8N+p53xNYDfyBmCRR1yDl530scUl53Had/9Se/0OAKmBYPWV0DRrvemT5n0P/0rlvlPP9FDA1bl00cdymuVwDNTdNnUOBN51zxTHrngJy8X5xk63gnItsosgeQAHwTMxj1gOv4F2bKF2nLeCcW5lg9VdAZ/9vnf/GtwrviwLo/DcKvznQ3cD1eL8Ox9I1CJbOf2r9CnjXOTetnjK6Bo3nELwaqSf9+zr3qdUKLwGMtca/Nf+2yV8DJYmpMxSYHrvCOTcf75eBoYFE1LIMBcLArLj1P1L7/Os6NZw9gOgXBp3/RmBmITPLM7NfABfj/Yrs0PlvLOfh/Vp8b4JtugaN42czqzavX+5vYtbr/KfWbsBMM7vHzIr9vlTj4/pk6Ro0npOBRcCH/n2d+9R6CNjTzH5pZgVmNhj4C/BezA8nTf4aKElMnfZs+FUhVpG/TVKrPVDinAvHrS8C8mzDAB+6Tg3AzPbH6yca/bKs89841vvLh8D7wGX+ep3/FDOzDsANwCXOuaoERXQNUmsJ8GfgDOAI4DPgPjP7P3+7zn9qdcVr8rsTXoJyFjAceMHMojUpugaNwMzy8N4DT/s/EoLOfUo5517De/0/gFejOAMIAcfGFGvy1yAzyIO3AIkmobQ61kvDq+v8x2/TddoKZtYXrz/iS865h2M26fyn3h5AHjASuAavE/35/jad/9S6EfjMOfd6PWV0DVLEOfcm8GbMqglmlg38yczuihZL8FCd/4Zh/nKUc24VgJktwfuxaj/gHb+crkHqHQHks6GpaZTOfYqY2b7AfcBdwASgCzAO70eSA2ISwyZ9DZQkpk4R0C7B+rYk/sVAGlYR0MbMQnG/4rQDSmN++dd12gpmVoj3ATkfb3SvKJ3/RuCc+9L/8yMzWwn8z8xuR+c/pcxsW7w+WXuZWTt/dZ5/29bMwugaBOE5vBGX+6Lzn2pFwOxoguj7CKjEG3nzHXQNGsvJwE/OuSkx63TuU+t24GXn3BXRFWb2NV6z0aOA8TSDa6Dmpqkznbi2xGbWC29ko+kJHyENaTpe1f/AuPXxbb91nbaQ38TlVbzBUsb4HbKjdP4bXzRh7IfOf6oNwhu44FO8f/BFbGhqvRBvMBtdg+A4dP5T7cc61hsQHVhO1yDFzKwt3sAn8bWIOvepNRT4OnaFc24G3nQXA/xVTf4aKElMnQnAwWbWJmbdSXgvoPeDCalF+QQoBk6Irohptz8hppyu0xYws0y8OSoHAYc655bHFdH5b3yj/ds56Pyn2kd48/PFLrf42w4DbkPXIAjH4Y0yOw+d/1R7FdjBzDrGrNsL78eTb/z7ugapdwyQzcZJos59as0DdoldYWbb4I1IOtdf1fSvQZDzbzTnBa+z6RLgbbwJNM8FSkiDyTGbw4LXtOt4f/kU+CHmfp5f5o94o0NdgDfZ6Wt4XyC66Dpt9fl/AO/X+ovZeELfbJ3/lJ//N/Dm5TsUOAi4zj9vT8WU0flv3Gsylrh5+3QNUnq+nweu8N8Dh+NN7O6Ai3T+G+X8F+B1M/gU70vvqcAC4O24croGqb0ObwBf17FN5z515/13eDXmt/vn7TS8wWvmAK2byzUI/EQ35wWvXf67eL8GLMEbCS8UdFzNYcHrc+LqWPr6ZQy4Gq/5VxneCJA76zo1yPmfq/Mf6Pm/Afje/0eyBq+p6UVAq5gyOv+Ne03GsnGSqGuQuvN9k/+lrNQ/b1OBM+LK6Pyn9hoMBF7HG2G5CHgYaK9r0GjnvyNQBVxZx3ad+9SdewN+C3zrv/4XAU8D/ZvTNTA/OBERERERERH1SRQREREREZENlCSKiIiIiIhIDSWJIiIiIiIiUkNJooiIiIiIiNRQkigiIiIiIiI1lCSKiIiIiIhIDSWJIiIiSTKzg8zs9wnWP2xmUzZjP33NzJnZ4Q0aYOJjOTO7MNXHERGR5iMz6ABERESakIOA44G/x62/Acht9GiSszswJ+ggRESk6VCSKCIisglm1gqI1LXdOfdzI4azWZxzk4OOQUREmhY1NxURkWYh2uTTzI42s+lmVm5mH5nZsLhyl5rZF2a21syWmdkrZjYwrswkM3vOzM41s5+BcuAB4FKgj9+E05nZw7HHjttHHzN70sxWmlmpmX1rZqdu4jmcbWY/mFmFmc0zs8uTeN5HmtlUM1tvZkVm9pmZ7R2zvaa5qZntExN7/NJ3a+IQEZHmQzWJIiLSnPQB7gD+DJQB1wFvmtkg51y5X6YncA8wDygAzgM+NrPBzrm1MfsaDQwArgBKge+BHGA/4Bi/zIpEQZhZZ+BT/3F/ABYA2wG96grczC4DbgJuBSYBw4EbzKzUOXdPHY8ZADwH3AVc5sc3HCis4zBf4jU/jfU3YAhQtKVxiIhI86IkUUREmpOOwFHOuU8AzGwq8DMwFrgPwDn3f9HCZhYC3gaWA0cBj8Tsqx2ws3NuaUz5JUBFEk04/w9oCwx3zi3x171TV2EzKwCuBf7inLvOX/22meUBfzKzfznnwgkeujOwzjl3Wcy61+s6jnOuGKiJ3czOB0YBBznn1m5FHCIi0oyouamIiDQny6MJIoBzbh4wFRgZXWdmo8zsbTNbBVTj1fblA4Pj9jU1NkHcTPsBb8QkiJuyO9AaeNbMMqML8C7QBa/2M5HvgLZm9j9/5NXWyQZoZr/AG4Dnj865d7cyDhERaUaUJIqISHOyvI513QDMrDfwFmDAb/CalO7ql8mJe9yyrYijA5BsggheDSjAD0BVzPKevz5hM1Xn3Ay8GtD+eDWIK83sCTPrVN/BzKwHXjPVF51zt21tHCIi0ryouamIiDQnnetY94P/9yFAHl6T1PUAfk1Zoj58biviWIWfmCZptX97OImT0xl1PdA59xrwmpm1Bcbg1Q7eDZycqLyZZQPP+zH+qqHiEBGR5kNJooiINCedzWyPmD6JvYFdgP/623PxprKojnnMiST//7CSjWscE3kHuNjMujjnkqmR/BRvoJ3uftK32fxBd57wRzaNH5wm1j+BocBI51xJQ8chIiJNn5JEERFpTlYCj5pZdHTT6/Gakj7sb38XCAH/NbMHgW3xRh9dk+T+pwNdzGws3minK51zcxOUuxP4JfChmd2IN7rpNkBr59yt8YWdc2vMbBxwl5n1AT7A6xIyGNjXOXdM/GMAzOw3eAnhG8BiYBBwArUH4Iktfype7eGNQKGZjYrZ/NWWxiEiIs2LkkQREWlO5uFN3/BXvOkwpgCnRKe/cM59Z2Zn4Y3geQzwDV5S9XSS+38G2BdveohOwP/wRk6txTm3wsxG++X+DmQDs4Cb69qxc+5WM1uMNzLqpXhzM87cRGzfAkfiTftRiNcP8t/ANXWUjw7Oc7W/xOoHzN3COEREpBkx57amy4WIiEh68Ce23845NyLoWERERJoyjW4qIiIiIiIiNZQkioiIiIiISA01NxUREREREZEaqkkUERERERGRGkoSRUREREREpIaSRBEREREREamhJFFERERERERqKEkUERERERGRGkoSRUREREREpMb/A8uQL2h46cvJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(1, figsize=[15,5])\n", "ax = df_NILU[tsel].plot(lw=2, colormap='coolwarm', marker='.', markersize=10, title='Aerosol particle number size distribution', fontsize=15)\n", "ax.set_xlabel(\"particle size\", fontsize=15)\n", "ax.set_ylabel(\"Number of particles\", fontsize=15)\n", "ax.title.set_size(20)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save into a local csv file" ] }, { "cell_type": "code", "execution_count": 173, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "size_dist06May2016_0530.csv\n" ] } ], "source": [ "filename = 'size_dist' + tsel.strftime('%d%B%Y_%H%M') + '.csv'\n", "print(filename)" ] }, { "cell_type": "code", "execution_count": 169, "metadata": {}, "outputs": [], "source": [ "df_NILU[tsel].to_csv(filename, sep='\\t', index=True, header=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save into Galaxy history\n", "- You can also use [bioblend](https://bioblend.readthedocs.io/en/v0.5.3/index.html) python package to directly interact with your galaxy history" ] }, { "cell_type": "code", "execution_count": 174, "metadata": {}, "outputs": [], "source": [ "!put -p size_dist06May2016_0530.csv -t tabular" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save to NIRD via s3fs\n", "- Make sure you have your credential in `$HOME/.aws/credentials`" ] }, { "cell_type": "code", "execution_count": 178, "metadata": {}, "outputs": [], "source": [ "import s3fs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the path on NIRD (and add \"s3:/\" in front of it)" ] }, { "cell_type": "code", "execution_count": 184, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "s3://work/size_dist06May2016_0530.csv\n" ] } ], "source": [ "s3_path = \"s3://work/\" + filename\n", "print(s3_path)" ] }, { "cell_type": "code", "execution_count": 182, "metadata": {}, "outputs": [], "source": [ "fsg = s3fs.S3FileSystem(anon=False,\n", " client_kwargs={\n", " 'endpoint_url': 'https://forces2021.uiogeo-apps.sigma2.no/'\n", " })" ] }, { "cell_type": "code", "execution_count": 189, "metadata": {}, "outputs": [], "source": [ "bytes_to_write = df_NILU[tsel].to_csv(None, sep='\\t', index=True, header=True).encode()\n", "\n", "with fsg.open(s3_path, 'wb') as f:\n", " f.write(bytes_to_write)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Check your file" ] }, { "cell_type": "code", "execution_count": 190, "metadata": {}, "outputs": [], "source": [ "dfo = pd.read_csv(fsg.open(s3_path), sep='\\t', index_col=0)" ] }, { "cell_type": "code", "execution_count": 193, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
2016-05-06 05:30:00
10.020.16
12.041.16
14.059.79
17.052.01
21.021.98
\n", "
" ], "text/plain": [ " 2016-05-06 05:30:00\n", "10.0 20.16\n", "12.0 41.16\n", "14.0 59.79\n", "17.0 52.01\n", "21.0 21.98" ] }, "execution_count": 193, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dfo.head()" ] }, { "cell_type": "code", "execution_count": 199, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEhCAYAAAC6Hk0fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABH/ElEQVR4nO2deZgU1dWH3x/DvigILigIAiqLKCiIuLGoKHEFNXFJXKJRE41+Me67GGM0rtG4xRjNF8Uvcd8IRhDFBZVFXBCXCCqCCoggOwzn++NWMzU93TM9M93TPdPnfZ56uureW1W/qq7uU/eee8+VmeE4juM4taFRvgU4juM49R83Jo7jOE6tcWPiOI7j1Bo3Jo7jOE6tcWPiOI7j1Bo3Jo7jOE6tcWPipEXSJEl35FtHHElXSXq/GuXnSjovl5pyiaSTJC3Ptw4ASV0lmaQBdXzeZyU9ENvOyXOZfH2ShkbbHbJ9ruj4Bff7qg1uTOoASf0llUp6Ld9a6guV/HHdCAzJhyaHL4GOwDt51jEauDiTgtV8+cjJ9VXyQpDxddQH3JjUDb8A7gR2ktSrtgeT1LT2kgqXyq7PzJab2eK61NMQqckzZGalZva1ma3PhaZq6PjOzH7I5jElNa3r68vFdeQTNyY5RlIL4DjgL8CjwCkpyuwp6WVJKyV9JekuSZvE8idFaTdKWgi8FqXvK+lNSaslfSPplvifRJQ/RdJySUujsjvF8kdLek/SGklfSrpUkqpxbSdFxz5U0seRjpckdYuV6S7pKUlfS1ohabqkQ5KOMzd6g7xf0vfAQ8CcKPvtqIYyKSpb4U1T0omx6/gm3iSSQvOmku6V9K2kH6L7XmmzTaTvMkn3SFomaZ6k85PKmKSjUux3XlKZX0b3Y2V0z4ZJ6iRpfHR/3pG0awoNae9xLH9alD9H0rVJz0Kqe5zqWvtKmhBd5w+SZkoaFuUlNwNNiraTl6FRflNJ10f3a4WktyUdWMW9binpgei5+kbSJSnKlGseip7jdyWtkvRd9J1uKekk4EqgT0zbSbHv4kxJj0taAfw++fpi7BF9L6uje7xb7NwVah2KNY9F9+JvQKuYhqvSXEc7SQ9KWhJdy4uS+iSfS9J+kt6P7ulLkrar7J7WGWbmSw4X4GfAzGh9KPAt0CSW3xdYDvwW2B4YBLwBPBorMwn4AbgJ6An0ArYBVgB3R9uHAF8DN0X7NAaWEJqFukf7HQf0ivJ3A0qBq4EdgOMjHb9OOu8dlVzbScA6YCqwF9AfeAWYCSgqswtwRnSdPYBLgbVAz9hx5gLLgAuiMtsDAwEDDgS2AjaLyl4FvB/b93RgNXAusGN0XecnHfu8aF3Aq8BzwO7Rua6Jzt2xkuucCywGzor2+XWkbXCsjAFHpdjvvKQyXwHHRtf4cPSdjQcOj76H54F3q3mPD4yu4eToux4GfATcWNk9TnOt7wH/iJ6XHsCoxHUCXaNrGBBtbxZ9N4nlruh6toryHwKmAPsC3aL7txbYpZJ7fWd0jw4EdgL+Fel+INVzGZ13LeH30zXa51RgS6AF4fmfHdPYIvZdfBuV7QZsl+L6hkbbs5P0fA20jH0/y5OuIbFfB6ApcA7ht5rQ0DrV7wt4KjrXvoTfy9OEprcWSc/Ci4Tnd2dgBjA+3/9zZubGJOc3GF6m/J/ZXODIWP7fgb8m7dMvehi3iLYnEfuDidKuBT4FGsXSTgLWAC2jH7oBQ9LoegiYmJR2FTAvtl3uYU9xjJOic+wVS+tCMFL7V7LfFOCy2PZc4JmkMuV+2Eka48ZkHvCHSs41N3b/hxMMZoukMu8AF1RxjLFJaZ8kXUOmxuS62PZOUdq5sbShUVqHTO8xwbhcnnTuI6JrVUzLM+muMbbfMuDENHkpv5Mo7yfAKmCPaLs7sAHYNqnck8CdaY7fOnp+j09K+570xmTXSFOXNMcs97wkfRe3V3Z9se8ilZ5TY99PWmOSrkyK69g+2mffWP6mwNKkcxmwY6zM8QRj2ijV9dfl4s1cOURSD8Lb5MMAFr79hwhvQwl2A34aVV+XR1XmhKO+e6zctKTD9wLeMLMNsbRXCW9CPczsO+ABYLyk5ySdK6lz0v7JHQJeBbZRrIktAzYAbyU2zOxzYD7QG0BSK0k3SJoVVd+XAwOAbZOOM7Ua5yQ69haEGtqEDHfZjWBoFybd750of69T8W7S9nxgi+roTXGcb6LP91KkxY9d6T0mXNelSdf0MNCK8CacIJN7fDNwn6SJCs2ePavaIWoWuh84xcymRMm7El6eZiXpOpj097o74fl9I3atyyl/f5KZSXhTf1/SYwrNiJtXpTki02culZ7e6YvXiF6E7zl+rqUpzrXGzD6Kbc8HmgBts6yn2jTOt4AGzqlACfCFylwRApDU2cy+JPit7gNuSbH/V7H1FUl5IrylpCK8epmdLOlW4CDgMOBaSUeY2fhM9s8SN0bnP4/wNr+SUBtLdgAnX18mZOzfiWhE+LPeJ0Xesir2XZe0bZT3OVoKPU2qOI5VkladF71GhObKf6XIWxhbr/Iem9lVkh4CRhKadq6UdIaZ3Z+qvKStCbWNm83s4SRNRmiuTL53q9KcvrrfJ2ZWKmkEsAcwguCTvE7SEDObWcXuNXnmktlAZt97VVR27fHfY3LngJo8Lzkh7wIaKpIaAycSuv71iy27EN5OT46KTgf6mNmnKZZ0PzqAWcBgSfHvcG9Clfe/iQQzm2lm15vZUEK1+sTY/nsnHXNvQjNXdXqYNCL8YQAgaVtga+DD2DH/bmaPmdm7hGapqmoBRNcBwRinxMy+IRjc/TLUOp3Qlr4hxb3+NsNjpGMhoVspAJK2jG/Xkqru8XSCDyrVM1Ttnklm9omZ/cnMDgb+Svma9EYkNScYkinAFUnZMwh/kFul0PQVqfmUYHj2iJ2jFaHmWJleM7M3zOxqwn2aT2h2g/AcpX2GMiSVnsS9Xwi0TKrN90vaPxMNswjf8+DYuTYh+E5m1Uh1HePGJHccTHDA/cXM3o8vwCPAzyNDcD2wu6S7Fcaj9JB0iKR7qjj+nYQ/lDsl9ZJ0MPAHQhvsSknbSfqDQk+xLgo9cnam7MG8CRii0MNnB0nHE5yYN1TzOtcDt0oaLKkf8CDwAaHpAeBjYJSkXSX1JTh3m2dw3G8Jb7AHRj1zNk1T7lrgfyT9JrqOfpJ+m6bsi4SmvackjYzu0WBJV0tKVVupDhOBMyUNkNSf0MS4upbHTFDVPR4DHCdpjKSdJPWUdJSkan2XklpI+nPUG6mrpEGEl4F0f2b3EJpXLgC2lLRVtDQ1s48JTboPRFq6RffmPEmjUx0sakL6K3C9pAOinkz3U8kfsaQ9FHraDYyM7GFA55jmuUCX6PnrIKlZde5JxGVJetYSNV0DbxJqONdFv90jgV8l7T8XaB4do4Oklimu/ROCA/4eSfvEfivLYucqbPLttGmoC6Enxgtp8roRqqcjou0BwL8JD84KQjvpmFj5SaRwhBN6fbxJcFp+Q2gqaxblbQk8TnhzXwN8QTAU8Z5ko6NzrSX0GrmUyGFb2Xlj+ScRnLyHE5qw1hA6HPSIlelC+NNbQaiVnAc8S3mH6lxijupY+qmR7lJgUpR2FUkOVULTxqzoOr4G7k93bKANcFukJXHdjwDdK7nOCvqS7w3BsI+L7sd/gSNTnLuck57wsmHA0Fhazyhtp0zvcVRuBDCZ0Iy4jOAPOKuqe5x0jKaEP67Po/PMB+4FNonyu1LeQT032k5ehkb5TaLv67PYd/M0sFslGloRmkGXE14oLk/xvGy89wRfwzjC87+GULu5IFa2GaFL/pJI20mpvos01zc02j6M0JqwhlALHJi03+GEl6ZVhJ55PyXmgI/K3AUsitKvSvMMtSO8KCyJjvUiodWi3O8t6dxDk8+VryXR08Nxqo1Cn/07zKx1vrU4jpNfvJnLcRzHqTVuTBzHcZxa481cjuM4Tq3xmonjOI5Ta4p20GKHDh2sa9eu+ZbhOI5Tr5g2bdoiM6sQZaBojUnXrl2ZOrXaETwcx3GKGkmfp0r3Zi7HcRyn1rgxcRzHcWqNGxPHcRyn1hStz8RxioV169Yxb948Vq/OVqgwpxho3rw5nTp1okmTzIIguzFxnAbOvHnzaNOmDV27dkWZz8rsFDFmxuLFi5k3bx7bbZfZrMDezOUESkvh2WfhmmvCZ2lpvhU5WWL16tW0b9/eDYmTMZJo3759tWqzXjNxguE48EB4801YsQJatYJBg2D8eCip7VQQTiHghsSpLtV9Zrxm4sC4ccGQLF8OZuHzzTdDuuM4Tga4MXFgxoxQI4mzYgW8805e5DgNiy+//JJhw4bRq1cv+vTpw2233bYx77vvvuOAAw5g++2354ADDmDJkiUALF68mGHDhtG6dWvOOuuscsdbu3Ytp512GjvssAM9e/bkscceS3neadOm0bdvX3r06MHZZ5+dmP+DBx54gM0335x+/frRr18/7rvvvpT7r1mzhp/85Cf06NGDQYMGMXfu3I15X3zxBSNGjKBXr1707t27XF5V1zZ37lxatGix8fxnnHFGyvNffvnl7LzzzvTr148RI0Ywf/78jXnXXXcdPXr0YMcdd2T8+PEp9093/kz3rzb5nlAlX8tuu+1mTsQzz5i1bGkW6iVhadYspDv1nlmzZlVvh/Xrw3c/Zkz4XL++VuefP3++TZs2zczMli1bZttvv7198MEHZmZ2/vnn23XXXWdmZtddd51dcMEFZma2fPlymzx5st1111125plnljveFVdcYZdeeqmZmZWWltrChQtTnnfgwIH2+uuv24YNG+yggw6y559/3szM/va3v1U4Zir+/Oc/2+mnn25mZmPHjrUf//jHG/OGDBliL7zwgpmZ/fDDD7ZixYoK+6e7tjlz5lifPn2qPP/SpUs3rt92220btXzwwQe288472+rVq+2zzz6zbt262foU31G682e6v1nqZweYain+U71m4sDIkdAxabryDRtg993zo8fJHwn/2bHHwpVXhs8DD6xVh4yOHTuy6667AtCmTRt69erFV1+FaeCfeuopTjzxRABOPPFEnnzySQBatWrF3nvvTfPmFWd4vv/++7n44osBaNSoER06dKhQZsGCBSxbtozBgwcjiRNOOGHjsTMlru2oo45iwoQJmBmzZs1i/fr1HHDAAQC0bt2ali0rzMSb9toyZZNNyqaVX7FixUYfxlNPPcUxxxxDs2bN2G677ejRowdvvfVWxufPdP/q4sbECU72Fi3C+nHHwU47wbp1EP1gnQaEVPnSuDFMmFDefzZhQkivbL8MmTt3LjNmzGDQoEEAfPPNN3SMXmQ6duzIt99+W+n+33//PRCagHbddVeOPvpovvnmmwrlvvrqKzp16rRxu1OnThsNGMBjjz3GzjvvzFFHHcWXX36Z8lxfffUVnTt3BqBx48ZsuummLF68mI8//pi2bdsyevRo+vfvz/nnn09pCmNb2bXNmTOH/v37M2TIECZPnrwx/dRTTy0XM/DSSy+lc+fOPPTQQ4wZM6aCruRri++f7vyV7V8b3Jg48N578P770K4d/O1v8Oij0LQp3H8/vPxyvtU5DYTly5dz5JFHcuutt5Z7664O69evZ968eey1115Mnz6dwYMHc95551UoZynmaUq82R966KHMnTuXd999l/3333/j23umx1i/fj2TJ0/mxhtv5O233+azzz7jgQceyPgaOnbsyBdffMGMGTO4+eabOe6441i2bBkA9913HwMGDNhY9tprr+XLL7/k+OOP54477qjy2pL3r8511ZY6NSaSjpb0tKSvJC2XNE3SsUllJOkSSV9KWiXpFUn9Uhyrt6QJklZKmi9pjCTvx1oTHn44fB59dDAiO+4Il1wS0s44A9asyZ82J7uU94xVXJ55Blq3Lr9P69YhvbL9qmDdunUceeSRHH/88YwePXpj+pZbbsmCBQuA0DS1xRZbVHqc9u3b07JlS0aNGgXA0UcfzfTp0yktLd3o0L7iiivo1KkT8+bN27jfvHnz2HrrrTceo1mzZgD84he/YNq0aUCoBSSOAeGNPVFrWb9+PUuXLmWzzTajU6dO9O/fn27dutG4cWOOOOIIpk+fXkFrumtr1qwZ7du3B2C33Xaje/fufPzxx5Ve93HHHbexo0FcV/K1ZXL+TPevLnVdMzkXWA78BjgMeAl4WNKvY2UuAi4HrgcOjcq/KGmrRAFJ7YAXAQMOB8YAvwWuroNraFhs2FBmTI4/viz9ootghx1g9my44Yb8aHPqnpEjwxij1q1D81Xr1mF75MgaH9LMOOWUU+jVqxfnnntuubzDDjuMBx98EIAHH3yQww8/vNJjSeLQQw9l0qRJAEyYMIHevXtTUlLCO++8wzvvvMOYMWPo2LEjbdq0YcqUKZgZf//73zceO/EHC/D000/Tq1cvINQCEsdI1vboo48yfPhwJDFw4ECWLFnCwoULAZg4cSK9e/euoDXdtS1cuHBjs9hnn33GJ598Qrdu3Srs/8knn5TT2bNnz43HfeSRR1izZg1z5szhk08+YfcU/s105890/2qTyiufqwXokCLtYWBOtN4cWApcEctvBSwEfhdLuxhYAmwSS7sAWBlPq2zx3lwRkyeHd8vOnc1KS8vnvfRSWc+ujz7Kizyn9tS4N9c112SlN9fkyZMNsL59+9ouu+xiu+yyiz333HNmZrZo0SIbPny49ejRw4YPH26LFy/euF+XLl2sXbt21qpVK9tmm2029gCbO3eu7bPPPta3b18bPny4ff755ynP+/bbb1ufPn2sW7duduaZZ9qGDRvMzOyiiy6y3r17284772xDhw61Dz/8MOX+q1atsqOOOsq6d+9uAwcOtP/+978b81544QXr27ev7bTTTnbiiSfamjVrKuyf7toeffTRjefv37+/Pf300xv3OeWUU+ztt982M7PRo0dbnz59rG/fvnbIIYfYvHnzNpb73e9+Z926dbMddthhYy+15P0ru7fp9k+mOr258t5FFzgfWBGtDyfUNnomlbkfmBbbfgV4JKnMttG+h2ZyXjcmEWecER6DqNtgBU46KeQPH24W/Rid+kW1jYnjRNS3rsF7ArOi9Z5AKfBJUpkPozxi5WbHC5jZF4SaSbycUxlr18I//xnW401ccf74R2jfHiZOhH/8o+60OY5Tr8irMZG0H8Hn8ecoqR2w3MyS+9ktAVpKahor932KQy6J8pxMeOEF+O476NMH+vZNXaZDB7jpprB+7rmweHHd6XMcp96QN2MiqSvBX/KUmT0Qy0rVNUQp8tKVS9u1RNJpkqZKmppwnhU1Dz0UPo8/vvKxAiecAMOGwaJFcMEFdaPNySqWQY8rx4lT3WcmL8ZE0mbAOOAL4KexrCVAmxRdfNsCK81sXaxc2xSH3pTUNRYAzOxeMxtgZgM233zzmolvKCxfDk89FdaPPbbyshLcfbePPamnNG/enMWLF7tBcTLGLMxnkioCQTrqPAS9pJbAs0BT4GAzi0cYnA2UAD2Aj2LpyT6S2ST5RiR1JvT8KudLcdLw5JOwahXstRd07Vp1+R12gEsvDSE2Tj8dZs6EqK++U9gkxlx4bdypDomZFjOlTo2JpMbAv4Dtgb3MLDl2wuvAMuBo4HfRPi0J403ujZUbB5wvqY2Z/RCl/QRYBfhrcyakGltSFRdeGPb76CO4/nq44orcaHOySpMmTTKeLc9xakpdN3PdCfwIuAbYTNIesaWZma0G/gBcIunMyEH/r0jn7bHj3A2sAR6XtL+k04CrgJvNbFldXlC95Ntvg/O9ceMw6j1TmjWDe+4J69deC1WM2nUcp3io62auEdHnbSnytgPmEoxJI8LAxPbAVOAAM9sYzc3MlkSG5g7gGYKf5BaCQXGq4l//ClFgDz449NaqDkOGwMknhxheRx0Vll13DSOkfVZGxylaVKxOuQEDBlg8OmdRseee8MYboTfXccdVf/9vv4VOnUJkYcmn+XWcIkLSNDOrEE2yEAYtOnXJZ58FQ9KqFVQRByktb70FjaJHx3yaX8dx3JgUH2PHhs8jjggGpSbMmBFGz8fxaX4dp6hxY1JMmJUNVKxJ81aC/v0rGqJWrSAK3e04TvHhxqSYmDkTPvwwON2jKUdrRCJMeXyq0t13r1WYcsdx6jduTIqJRK3kxz+GJk1qfpySkuBsf+SRshrKHXe4891xihg3JsXChg1l/pLqDFRMR0kJHHpoWW3k1Vdrf0zHceotbkyKhVdega++CqFTBg/O3nGHDAmfHq/LcYoaNybFQtzxXlmE4OoSNyZFOmbJcRw3Jg2f0lJ44omyia2OOSa7x+/TBzbbDObNgzlzsntsx3HqDRkZE0m9JO0R224h6feSnpT069zJc2pFaSkceGCojaxeHQYa/uY3IT1bNGoE++4b1r2py3GKlkxrJncSIvcmuBE4B2gOXC/p/GwLc7LAuHFhZPrq1WF7w4bcjFR3v4njFD2ZGpOdgDcAJDUhTGj1P2Z2EHAJ8PPcyHNqxYwZYWR6nFyMVHdj4jhFT6bGpBVhnhGAPaLtx6Pt6UCXLOtyskH//uUHFkJuRqrvvDNsuinMnQtffJHdYzuOUy/I1Jh8RjAiAKOAGWa2ONruAPyQci8nv4wcCfFJkVq3DiPXsz1SvaQE9tknrHvtxHGKkkyNyS3A7yS9DZwN/CmWNxR4N8u6nGxQUgJDh4b14cPDoMVchYn3pi7HKWoymhzLzP4q6RNgIHCRmU2IZX8H3JoDbU42eOON8HnppcGg5Ao3Jo5T1PjkWA2Z5cuhbduwvnRpzUPOZ8L69WG8yQ8/hJH2W2+du3M5jpM3aj05lqQtJF0vaYKkjyX1idLPkZTF+BxO1njzzTCmJFXI+GzTuDHstVdY99qJ4xQdmQ5a3B34FDiSME97d6BZlN0R+G0uxDm15LXXwmfiTz7XeFOX4xQt1XHATwR2AE4H4sGd3gJ2z7IuJxskIvnuvXfdnM+NieMULZkak12BO81sA5DsZFkMbJFVVU7tKS2FKVPCel3VTAYMCONaZs+Gb76pm3M6jlMQZGpMlgKbp8nrBvg/R6Hx3nvBGb7ddtCxY92cs0kT2HPPsP7KK3VzTsdxCoJMjclTwNWSusXSTFIH4DzKRsM7hUJdN3El8KYuxylKMjUmFxHCqcwCEq+cdwMfAauAK7IvzakVde18T+DGxHGKkoyMiZktIYRTORP4HHgRmEMwMnuZmYdTKTQSNZO6Nia77w7Nm8P778OiRXV7bsdx8kbG40zMbK2Z/dXMjjOzEWZ2jJn9xczW5FKgUwO++CJMVtW2LfTuXbfnbtYM9ojCuE2eXLfndhwnb/hMiw2RRBPXnnuGyavqGm/qcpyiI21sLkkLqdgNOC1m5t2DC4V8NXElcGPiOEVHZYEe/0w1jIlTQCRqJnXdkyvBHntA06YwcyYsWQLt2uVHh+M4dUZaY2JmV9WhDidbLF0axpg0aQIDB+ZHQ4sWwRH/6qthOfTQqvdxHKdek2lsrs6Sdk2Tt6ukztmV5dSYKVPCXO+77hr+1POFN3U5TlGRqXf2LsK876k4DrgzO3KcWpPvJq4Ebkwcp6jI1JjsQQj0mIqXKJvS18k3+Xa+J9hzzxCWfvp0WLYsv1ocx8k5mRqTllTujM/xZBlORqxbF+YwgbIYWfmiVasQ+HHDhrLakuM4DZZMjcl7wLFp8o4FPsj0hJJ6SLpH0kxJpZImpSgzV5IlLV+nKNc7mqxrpaT5ksZIysEE5/WEmTNh5UrYfnvYcst8q/GmLscpIjKaAx74A/CYpGbAA8ACwqRYJxImzDqyGufsA/wImAI0raTcw8Dtse218UxJ7QhhXWYBhxMm7LqJYCAvq4aehkOhNHElGDIErr/ejYnjFAEZGRMze0LSicB1BMNhhAmyvgJ+amZPVuOcz5jZUwCSHgU6pCm3wMymVHKcM4AWwGgzWwb8R9ImwFWSbojSiot8BXdMx157hRH4U6fCihW5nzrYcZy8UZ3YXP8LdAZ6A/tGn9ua2djqnDCaYCsbjATGJxmNRwgGZkiWzlF/MCucnlwJNtkkdFFevx5efz3fahzHySHVCtxkgdlm9lr0mcsR8j+XtFbSUkmPSuqSlN8TmJ2k7wtgZZRXXMyZAwsWQPv2sOOO+VZThvtNHKcoqCw216+Af5nZwmi9MszM7sqirqcIPpV5QC/gSmCypL5mtjQq0w74PsW+S6K8Ckg6DTgNYNttt82i3AIgHtxRyq+WOEOGwE03uTFxnAZOZT6TO4CpwMJovTKMMLAxK5jZObHNyZJeB94BTgZuTTpvMkqTjpndC9wLMGDAgIYVdyxfMytWxT77BOP21luwalV+R+U7jpMz0jZzmVkjM3srtl7ZktPuuGb2PmFWx3hIlyVA2xTFNyV1jaVhU2jO9wRt28Iuu8DatSHUi+M4DZJMY3PtK6l1mrxWkvbNrqy0xGsTs0nyjUQxwlqR5Etp0JSWwiOPwAcfhBHn/frlW1FF3G/iOA2eTB3wLxF6b6WiZ5SfMyTtBOwITIsljwMOlNQmlvYTwpz0xfGvVVoKBx4IJ58ctjdsgMMPD+mFhBsTx2nwZGpMKvPotib0oMrsQFJLSUdJOgrYBtg8sR3lHSxprKTjJQ2T9EtgPPAFYcBkgruBNcDjkvaPnOtXATcXzRiTceNC+JTVq8P2hg1he9y4/OpKZp99wueUKbDGZ3l2nIZIZb259gWGxpJOlXRQUrHmwMGEcCuZsgXwr6S0xPZ2wJdRmVsJPpHFwL+BS+JGwsyWSNqP0DngGYKf5BaCQSkOZswIgwHjrFgB77wDhxySF0kp6dABdtoJ3n8/OOITxsVxnAZDZb25BgG/jm0fDaxPKrOW4J84P9MTmtlcKq/pAOyX4bFmAcMzPXeDo39/aNmyvEFp1apw/Sbvvx+autyYOE6Do7LeXH80s83NbHPgc2BoYju2bGNm+5nZ9LqT7Gxk5Ejo0aNsu3VrGDQopBca7jdxnAZNlT4TSc2BT0kzENDJIyUlMDyqmO2zD4wdC+PHh/RCY9+ow9/rr4dQ+Y7jNCiqNCZmthoYABTgP5TDpEnh84orgp+kEA0JhJD4PXuGEPlTp+ZbjeM4WSbT3lxPA0fkUIdTExYvDs72pk0Lb7BiKrypy3EaLJkak/HA6Cjg4s+j7rs/ii+5FOmkYdKkEC14zz3rR5gSNyaO02DJdHKsf0Sfo6MlGcObweqeCRPC534ZdX7LPwlj8uqrISx940wfP8dxCp1Mf83b5VSFUzPqmzHZeuvQ++zTT8MYmYED863IcZwskelMi5/nWohTTebNg48/Dt2BBwzIt5rMGTIkGJOXX3Zj4jgNiGpNjiWpsaRuknonL7kS6KRh4sTwOWQINGmSXy3Vwf0mjtMgyahmIqkJ8CfgRKBZmmLuM6lL6lsTV4KEMZk4Ea6+GnbbLQyyLNQuzY7jZESmNZMrgEOAUwihUM4iTFQ1AZgLHJoLcU4azMpqJsPrWTSZbbaB5s3DeJOrr4Zjjw2Rjwst0rHjONUiU2PyY0IAxX9G22+Z2d/NbATwKnB4DrQ56fjkk+Az6dAB+vbNt5rqMW5c6MkFwSguX16YkY4dx6kWmRqTzsDHZlYKrKZ8aJWHgCOzLcyphEQT17Bh0Khabq/8M2NGxVpIItKx4zj1lkz/iRZQNkXuHCA+s2L3bApyMiDRxFXf/CVQFuk4TqFGOnYcJ2MyNSaTgETc8L8Al0h6WNLfgJuAp3KgzUnFhg3wUjSxZX00JiNHwh57lDncmzUr3EjHjuNkTKbG5FLg7wBmdith/pIuwC7A7cDZuRDnpGDmzBCTq3Nn6F4PK4UlJSGy8Wmnhe1ddincSMeO42RMRsbEzL42s/dj27eY2V5mtquZXWhmKyrb38ki8SYuVTXHWIFSUgKXXx70z5wZenY5jlOvqe6gxbaS9pZ0tKS9JLXNkS4nHfV1fEkyHTuGAJVr1sDzz+dbjeM4tSQjYxKNfL8emAe8AvwfMBmYJ+mGaFCjk2vWroVXXgnr9W18SSqOjDoBPvZYfnU4jlNrMq2Z3AycA/we6A10iD6vI/hLbsqJOqc8b78dutH27BmCJtZ3RkcBqJ9/Hlatyq8Wx3FqRabG5GfAJWb2ezObbWbfRZ/XEpzzP8udRGcjDaWJK0GXLiGcyooV8MIL+VbjOE4tyNSYbAA+SJP3PmE+EyfX1NcQKpXhTV2O0yDI1Jj8L3BqmrxfUDZ5lpMLSkvDn+2rr4btffapvHx9ImFMnn46+IQcx6mXZGpMPgf2kPSBpOsk/Sb6nAUMAj6T9Kto+WXu5BYhpaUhEOJPfxrWGzUKwREbSmDEHXaAPn1g6dKywZiO49Q7Mp1pMeFg3wbolSL/5ti6AXfVRpQTY9y4EAhx9eqwvWFDWWDEQw7Jr7ZsceSR8MEHofZ14IH5VuM4Tg3IdNBio2osPpQ5m8yYERzUcRpaYMREU9eTTzacGpfjFBn1LORsEVIMgRH79g1zwy9cWOYXchynXuHGpNAZOTL4FRK0bt3wAiNKZWNOvFeX49RL3JgUOiUlcPDBYX3PPWHs2IYZGDHR1PX448Ev5DhOvcKNSX0g0fRz/vnB6d7QDAnAwIHQqRN89VUY6e84Tr0irTGRtK3H3CoA1qyBKVPC+t5751dLLvGmLsep11RWM5kD9AeQNFFSz7qR5JRj2rTQLbh37zDne0MmPhrePKiC49QnKjMmq4BEN6KhwCY5V+NUJBEleN99Ky/XENhrL9hiC/jsszDPieM49YbKBi3OAG6T9J9o+9eSFqQpa2Z2YXalOUBxGZOSEhg1Cu65JzjiG1L3Z8dp4FRWM/kF8AVwOGFU+37A0ZUsGSGph6R7JM2UVCppUooyknSJpC8lrZL0iqR+Kcr1ljRB0kpJ8yWNkdRwvNOlpfDaa2G9IcXjqgz3mzhOvSRtzcTMZgOHAkjaABxhZm9l4Zx9gB8BU4CmacpcBFxOmGt+NnAu8KKknczs60hTO+BFYBbB4HUnhH1pBFyWBZ355913Ydky2G670NOpGBg2DNq1g1mzYPbsMHeL4zgFT6Zdg7cD3snSOZ8xs85mdjQpwtpLak4wJteZ2R1m9iKh5mPAWbGiZwAtgNFm9h8zuxu4GjhXUsPw7xRTE1eCJk3gsMPC+uOP51eL4zgZk2lsrs+BDZJ+Iul2SQ9Fnz+WlGmwyMSxqhqRtifB2f/P2D4rgGeA+LDvkcB4M1sWS3uEYGCGVEdTwVKMxgS8qctx6iGZzgG/BTAVGAscDHSLPh8B3pa0eRY19QRKgU+S0j+M8uLlZscLmNkXwMqkcvUTs+I1JiNGhLAx06fDnDn5VuM4TgZUZw749sAgM+tmZoPNrBthLpP2lA9BX1vaAcvNLDl87BKgpaSmsXLfp9h/SZRXAUmnSZoqaerChQuzpTc3zJ4NixbBVltB9+75VlO3NG9eFkLmiSfyq8VxnIzI1Jj8CLjQzMrFuYi2LybUUrJJqhFrSpGXrlzKEW9mdq+ZDTCzAZtvns3KVA6YPDl87rtvGB1ebHhTl+PUKzI1Js2AH9Lk/UD6Xlk1YQnQJkUX37bASjNbFyvXNsX+m5K6xlK/KNYmrgQ/+lGoobz+Osyfn281juNUQabGZApwoaRW8cRo+8IoP1vMBkqAHknpyT6S2ST5RiR1Blollat/mMHLL4f1YjUmrVuXzbroTV2OU/Bkakx+Sxgf8qWkRyTdJmks8CXQO8rPFq8Dy4gNhJTUkjDmZVys3DjgQEltYmk/IYSBeTmLeuqezz+HefPCeIs+ffKtJn/Ew9I7jlPQZNSt18zekbQ9cB4wENgZWADcDdxsZosyPWFkGH4UbW4DbCLpqGj7eTNbKekPwOWSllA2aLERcHvsUHcDZwOPS7qe0MPsqkhPvLtw/SPhL9l7b2hUxLMEHHIING4cammLFjX8QJeOU4/JeIxIZDAuysI5twD+lZSW2N4OmAv8gWA8Lib0FpsKHGBm38T0LJG0H3AHYQzK98AtBINSvyl2f0mCdu1gv/3CZGBPPQWnnJJvRY7jpKHOX3vNbK6ZKc0yNypjZnatmXUysxZmto+ZzUhxrFlmNjwq09HMLk/Rpbh+UVoKzz8f1hs1CtvFjDd1OU69oIjbUAqQ0lIYOrSs99KVVwYndDEblMMPD0b1P/+BpUvzrcZxnDS4MSkkxo2DqVPLtpcvhzffDOnFyhZbhIjJ69bBs8/mW43jOGlwY1JIzJgRZlWMs2IFvPNOXuQUDN7U5TgFT5XGRFIzSZdK2qUuBBU1/ftX7L3VqpVPEjVqVPgcNy4YV8dxCo4qjYmZrQEuJfVocyebjBhRFjpFCgP3Bg2CkSMr36+h06lTuA+rVsG//51vNY7jpCDTZq43gd1yKcQB/vvf4Gzv0AHGjIGxY0O32JKGM3lkjUk0dXmsLscpSDIdZ3IB8LCktcDzwDckBVM0s5VZ1lZ8vB3F0dxnH7isYUwWmTVGj4YLLghO+DVroFmzfCtyHCdGdWom3YE/EeYZWUYI8BhfnNqS6Mk1cGB+dRQi3bvDLrvADz/Aiy/mW43jOElkWjP5OWnCujtZJGFMBgzIr45C5cgjYebM0NR1cLZnPXAcpzbIrDhtxIABA2xqfExHvlm3DjbZJHQN/u67EErEKc+sWSHw5WabwTffhLhdjuPUKZKmmVmFN95qjTOR1FvSzyRdImmrKK1HUuRepybMmhUMSffubkjS0bs39OwZjO3L9TswtOM0NDKdA761pH8C7wP3AdcAW0fZvweuzI28IiLhfHd/SeX4DIyOU5BUZw74PYH9gDaUTaELoXfXQVnWVXy4vyQzEl2En3gCNmzIrxbHcTaSqTEZTZgD/iUgOerg50CXrKoqRrxmkhn9+0PXrvD11/DGG/lW4zhORKbGpAWwOE1eGyoaGKc6rF4N770XRr33759vNYWN5E1djlOAZGpM3gZOSJN3FGGqXaemvPde6M3Vqxe08b4MVZJo6vrHP0KkgGefLe4w/Y5TAGTat/Iy4EVJLxJmRTTgR5J+QzAmRT4lYC1JNHG5vyQzBg6Epk1h4UK46qoQDHPQIA894zh5JKOaiZm9SnC+NyNMkyvgasK86/ub2ds5U1gMuPO9eowfD4nxUWY+74vjFAAZjzMxs9fMbB9gE6AT0MbM9jKz13Kmrlhw53v1mDED1q8vn+bzvjhOXqnJ5FirgXXAqixrKU5WrAgDFhs3DrGnnKrp3z80bcXxeV8cJ69kbEwk/UjS6wRj8jWwWtLrkjxIUm2YMSOMl9hpJ2jRIt9q6gcjRwYfSdygdOni8744Th7JdAT86cAzwHLgHODo6HM58HSU79QE95dUn5KS4Dd55BE44oiQ9t13sNJnQXCcfJFpzeQS4F4zG2Fmd5vZ49HnCOAvhJkYnepSWgpPPhnWmzXz7q3VoaQEDjkkjDXZfXdYsAB+97t8q3KcoiVTY9IeeDxN3mPAZtmRU0SUlsKBB8Irr4Tt++8P225QqkejRnDHHWEw4y23wEcf5VuR4xQlmRqTl4AhafKGAK9kR04RMW4cTJlS1sV11Srv3lpTBg6EU04JAz/PPrvsnjqOU2ekNSZRuPneknoTZlj8maS7JB0oqX/0eTfwM+CWuhLcYJgxo2Ibv3dvrTm//z20bQsvvABPPZVvNY5TdFQ2Av59ys+uKOD0aDHKRw7+N+BDj6tD//7QpAmsXVuW5t1ba87mm8M118Cvfw3/8z+hydB7xzlOnVGZMRlWZyrqE6WloSlqxoxgEEaOrFkIj5EjYdNNQ0gQqSwkiHdvrTlnnAF/+Qu8+y5cf30IteI4Tp2Q1piYmU9ll0zCaf7mm6FJqjYxoUpKQg8uCG/TBxxQc8PkBBo3httvhyFDgjE58UTYbrt8q3KcoqDaI+AlNZbUMnnJhbiCY9y4YEiWL699TKivv4Z580KU4FtuCd1c3ZDUnn33heOOC2H9zz0332ocp2jIdNDippLulLSAMAL+hxRLw2fGjFAjiVNTp3kiHtduu4XurU72+OMfoXXrMIZn/Ph8q3GcoiDTEPQPELoA/wX4FFhbaemGSiIm1PLlZWk1dZp7cMfcsfXWcMUVcMEFoavwe++FkPWO4+SMTI3JfsDpZjY2l2IKnkRMqIkTy8Yy1NRpnjAmu++ePX1OGeecA3/9axjEeOutwbA4jpMzMm1f+QLwwEeJmFA771yW9txz1fd1mHnNJNc0bQp/+lNYHzMGvvoqv3ocp4GTqTG5ALhM0ra5FJNA0kmSLMVyRqyMJF0i6UtJqyS9IqlfzsWVlECHDmXbc+dW/xhz5sDixWFsxLZ1ckuLkxEjYNSo4Nfymonj5JRMZ1p8HpgMfCrpY0lvJS850jccGBxb4vHBLgIuB64HDiVEMH5R0lY50lJG3Al/9dXVn4M8XiuRKi/r1I6bb4bmzeHhh8vioDmOk3Uy7c11I/A/wAzgbeCDFEsueNvMpsSWbyM9zQnG5Dozu8PMXiSExTfgrBxpKSPugB87Fo49tnpBGr2Jq+7o2hUuuiisn3VWxRkaHcfJCpk2c50KXGpmg8zseDM7OXnJpcgU7EmYPvifiQQzW0GYcyX3Q8gXLiy/Xd3xJm5M6pYLLghG5b334K678q3GcRokmRqTlcC0XApJw38lrZf0UdIEXD2BUuCTpPIfRnm5JV4zSZDpeJPSUpgW3Uo3JnVDixZhYCiELsPffptfPY7TAMnUmNwGnCbVWQP/AoI/5GcEf8ibwN2SfhPltwOWm1lyu9ISoKWklIMKJJ0maaqkqQuTaxfVIVVTSabjTT78MBieLl1giy1qrsGpHocfHpoiv/8eLrkk32ocp8GR6TiTDsAg4CNJk4Dvk/LNzC7MligzGw/Ehy6Pk9SM0KPstkSxFLuqkjzM7F7gXoABAwbUbNKLDRtgzZryaa1bZzbepLQ0BCIE2GabsO0hVOoGCW67Dfr2DeNPTjvNx/g4ThbJtGZyFLAeaAIcQHB2Jy+55lHCjI5dCTWQNpKS/4nbAivNbF3OVKxaVX57882DE76qYI+JIJF33hm2p071mRXrmh13hN9ElduzzgovBo7jZIVMuwZvV8XSLddC43KA2YT5U3ok5fWM8nJHcmyuZs0yC9KYCBKZaCJbu9ZnVswHl10Wwq28/Tb87W/5VuM4DYb6FGHwSGAR8DnwOrCMWI0oilx8KJDbf+eEMWnbNnwuW5bZftkMEunUnDZt4MYbw/pFF8GSJfnV4zgNhIx8JpJ+VVUZM7uz9nI2nu8x4C3gXUIN5CfRcraZbQBWS/oDcLmkJYTayLkE43h7tnSkJGEQttoqOHN/+CE0l1QV+bd//xDiI+5v8ZkV88Mxx8Ddd4dBjFdeWRZ2xXGcGpOpA/6OSvISjuysGRPgI+DnQGeCU30WcIKZ/W+szB8IxuNioD0wFTjAzL7Joo6KLF0aPn/4IYysXr06GJg2bSrfb+TI4KhPGJNMnfZO9pHCJFr9+8Of/wynnlo+3prjONUmU59Jo+SF4Aw/FpgJ9M6mKDO7xMx2NLOWZtbCzHZLMiRY4Foz6xSV2cfMZmRTRwVKS8OsiBACByYMQyZNJStXBgMEYRBdJk57J3fsvDOceWaoVZ51VlkUaMdxakSNfSZm9r2Z/R9wN3BP9iQVMOPGhXEiCRJ/QM89V/W+//53cLoPHhymlPWZFfPPmDGhN97kycG4O45TY7LhgJ8DDMjCcQqfGTMqjjGBzJzoTzwRPkePzqokpxa0bQvXXRfWzz+/rOboOE61qZUxkdQR+C3BoDR8Ek70ZDp1qny/tWvLai+jRmVfl1NzTj45hLWZPx9OOgmuuab6UaAdx8m4N9dCKo4qbwq0IcwJXxyv2yNHhjAoH38ctktKwp/OjjtWvt/EiaELcd++0L177nU6mdOoUejNNXgwPP54qEG2ahU6R7hPy3EyJtPeXH+mojFZDcwD/m1mi7OqqlApKQlvshdfDHvvHWopEyeWdRcuLQ1+lWnTykKl9OtXNuq9Tx8PoVKILFoEjRuHAaVm5aNAH3JIvtU5Tr0gI2NiZlflWEf9YfXq8LnffvDdd2W1jtJSOOAAeO210KyVoFGjsrAdTz0VQqj4G29hMWNGxWatxIBSNyaOkxH1aQR8YbByZfhs2RI22SSsL1sW3mJff728IYHy8Z9WrfIQKoVI//6haSuZxPfrOE6VpK2ZSJpYjeOYme2XBT2FT9yYJFi2LH1Pr2T8jbfwGDky+EjefDN8P1J4Cbj44uAjO/zwfCt0nIKnsmauTPwgHQmzHhbPiK+4MWkc3b5ly2DIkPJNWunwECqFR0lJaHocNy4Y+j594LHH4KGHQu+7G26A3/42GBnHcVKS1piYWdqw8pK2BS4EDiEEX7wl+9IKlLgxad48rC9bBgcdlPrPplGjsjfdRC8hD6FSeJSUhNpiosZ4xBHQuzdcemkYgzJ7duhIkapruOM4GffmAkBSD0IsrJ8C30br95jZqkp3bEjEjUkiuOOyZSG8SmlpaGc/99yw3rgx7LJLKPPee6FGMnKkO9/rA1KYkXGHHeCEE8KEWp9+Gmos7dvnW53jFByZjjPpA1xKCPn+JXAOcL+Zra10x4ZI3Jgk3lKXLYOZM8P67ruHSLTJeLt7/eSoo6BrVzjsMHj5ZdhjjzCosaqxRY5TZFTam0vSbpIeJ4SC7w+cCmxvZncXpSGB9L253n03rCdqIk7DYcAAeOutULP89NNgUCZMyLcqxyko0hoTSeMIc4psBxxjZr3M7EEzK+44E+mMSaJm4qHMGyadOoWAkEccEeaxOegguPfefKtynIKhsprJgYS5RDoDf5b0bWVL3cgtABKj3ePGZOnSMFgxse5xnRomrVsHn8kFF4TR8qefXuYfc5wipzKfydV1pqI+Ea+ZJCbEis9ncvHFYaS7j3JvmDRqFKYQ6NkzGJNbbgmx2saOrXqCNMdpwFTWNdiNSSqSx5kkjy1ZscLjOhUDJ58M3bqFKQWeew722gueeSYMcnScIsTDqVSH0tIQBBCCA3bEiNSDFBOj3J2GzZAh4cVhxx1D1+/dd4cpU/KtynHyghuTTEkEcly/PmyfcELoKpoKH+VePPToAW+8EQJ/fvstDB0KjzySb1WOU+e4McmUceNC99AEq1endrw2beqj3IuNdu3C83H66SE+27HHwtVX+7zyTlHhxiRTZswo85eko2lTuPBCd74XI02awF13wa23Bj/aVVfB8ceHSNGOUwS4McmU/v3LRwqGYDCaNw+hN1q3hn32CaPf3ZAUJxKccw48/XR4HsaOhWHD4Ouv863McXKOG5NMGTkyjHxu3brMeAwZEtrHx4wJfxxeI3EADj44zG3TpUtw0A8aVBYhwXEaKLIibdcdMGCATZ06tXo7JablfecdD9roVM0334QR81OmhJePhx4KTWAzZoSarj8/Tj1E0jQzG1Ah3Y2J4+SQ1avh5z8PNVcIfrV168qmI/DarFPPSGdMvJnLcXJJ8+ahRnLccWF77drQy2v58tCl+Pnn86vPcbKEGxPHyTVSCL+SPHnaypVhJP2FF4amsKpm6XScAsaNiePUBf37h6atZBYvDtMCDx4cIhP/8pfwwguhBuM49Qg3Jo5TF4wcGXwk8d6Aw4bBiy/C2WfDttvCggVw991w4IGwxRbw05+GKMWJSNWOU8C4A95x6orKegOahV5eTzwRlg8+KNuvefMQB27UKDj0UJ822Mkr3psrCTcmTkHzySdlhiUePLKkJAyOHTUqdDvedtu8SXSKEzcmSbgxceoN8+eHOXKefBImTiwLNgqw227BsIwaBb16VXTyO06WcWOShBsTp17y/fdh/pQnnghNZvF4cTvsEGoro0aFcPiNGpU1rflASSdLuDFJwo2JU+9ZtQr+859gWJ55JvQMS7D11sG/8uab8OmnwYnvAyWdLNAgjYmk3sDtwGDge+A+4Gozq3JSbjcmToNi/Xp49dUyP8uXX6Yu17RpGNsydGhw5MeXVq28mcypkgZnTCS1Az4AZgHXA92Bm4BbzOyyqvZ3Y+I0WMxg+nQ491x45ZXM92vatKKBiS8dOlRMa9euerUcb3ar96QzJmnngK8HnAG0AEab2TLgP5I2Aa6SdEOU5jjFhxQc8+efH4xKYqppCPOu7L9/GOeyeHH5ZdWqMNZlwYLqnatt28qNUNzwnH126Bq9cmVhN7s1RKOX42uqzzWTV4D5ZnZMLG1b4HPgMDN7prL9vWbiNHhKS8MAyDffzMxnsmpVRQOTalm0qGz9++9rP6Nkq1ZhadIk1I6aNk29XpP8muxTUhKCc86cGYxey5aw664hWGejRmXXa5bd9Vweq7Q0zLUza1YIPtqyZZhSowaGvCHWTHoCE+MJZvaFpJVRXqXGxHEaPCUl4c8i02kTWrQIIV06dcr8HKWlsGRJZkZo1iz49tuKx1ixorBH+a9YAZMnV+++FDorVoSXjHHj4JBDsnLI+mxM2hGc7sksifIqIOk04DSAbX2wl1MMlJSEP4ss/WGkPH6HDmGpimefhWOPLd/s1qoV3HdfCC2zbl2ISbZ2bdXrtc2vrOzXXwcDmUyrVmXhcBIdFbKxns1jpTvu/Pkwb17561mxIrxkuDEBIFX9WmnSMbN7gXshNHPlUJfjOMkk4pMlN7sdfXRh+SNSGb3ENMy5Msq5Jp0h79cva6eoz8ZkCdA2RfqmpK6xOI6TT6rb7JYv0hm9kSPzrazm1ME11WdjMpvgG9mIpM5AqyjPcZxCI9fNbtmgvhi96lAH11Sfe3NdDJwPdDGzH6K084AxwFZVdQ323lyO4zjVpyFO23s3sAZ4XNL+kXP9KuBmH2PiOI5Tt9TbZi4zWyJpP+AOQjfg74FbCAbFcRzHqUPqrTEBMLNZwPB863Acxyl26nMzl+M4jlMguDFxHMdxak297c1VWyQtJMTxyoQOwKIcyqkNhaqtUHVB4WorVF1QuNoKVRcUrrba6upiZpsnJxatMakOkqam6gpXCBSqtkLVBYWrrVB1QeFqK1RdULjacqXLm7kcx3GcWuPGxHEcx6k1bkwy4958C6iEQtVWqLqgcLUVqi4oXG2FqgsKV1tOdLnPxHEcx6k1XjNxHMdxao0bE8dxHKfWuDFJg6TekiZIWilpvqQxknIag1pSD0n3SJopqVTSpBRlJOkSSV9KWiXpFUn9cqlf0tGSnpb0laTlkqZJOjbfuqLjHSXpdUmLJa2W9JGkyyQ1zbe2pGNvE907k9Q6n9oknRTpSF7OyKeu6HiNJV0k6RNJayTNk3RLUpl83LNJae6ZSRqcL13R8Y6RND16vr6S9HdJWyeVyb02M/MlaSFM+zsfeBE4ADgDWAH8LsfnPRz4EvgX8CEwKUWZi4FVwFnA/sDzhAFIW+VKP/AG8DDwY0IstBsJs1n+Op+6omOeDlwLjAKGARdGOu7It7YknQ8DX0f3rXWev8+TIh3DgD1iyxb5vmfA/0bHPB0YAvwU+H0B/AZ6J92rPYAXgIVA4zzqOiz6Lu8A9ovu11xgOtCoLu9ZrX8kDXGJbvwSYJNY2gXAynhaDs4b//IfJcmYAM2BpcAVsbRW0QP9u1haVvUDHVKkPQzMyaeuSvReS4girULQBuwDfAecR8yY5PH7PIkko1Ygz9lBwDqgdyVl8v59RsdqGn2nd+X5nj0CTEtKSxiYXnWpzZu5UjMSGG/l50V5BGhBeFvKCWa2oYoiewKbAP+M7bOCEII/Pv9mVvWbWarQCzOALfKpqxIWE37sedcWNRHcTpi0Lfk+Ftp9y7eunwMTLUQDLzRtyRxEeJMfm2ddTQiGIs730afqUpsbk9T0JGnqXzP7gmChe6bco27oCZQCnySlf0h5XXWhf08g8aPPuy5JJZJaStobOJvwxmgFoO0Mwpvhn1Pk5VvbfyWtV/AznV4AugYBH0u6Q9KyqN3+8aT2/3zfswTHAF8Bk/Os635gH0knSNpE0g7A74CXYka5TrS5MUlNO8qse5wlUV6+aAcsN7PSpPQlQEuVOZ1zql9hUrLDKfuDLARdK6JlMvAyYUrnvGqT1B64BjjXzNalKJIvbQuAy4GfAYcCbwJ3S/pNnnVtRWiC60f4sz4Z2A14QlLiLTvvz5qkloT79n/RC0vedJnZc4R7di+hhvIRUAKMjhWrE231enKsHJNqNKfSpNcl6XQl5+VEv6SuBH/JU2b2QKHoItSUWgK7A1cQHJK/yrO2a4E3zez5SsrUuTYzGw+MjyWNk9QMuEzSbfnSFe0n4HAzWwwgaQHh5WA4MCGP2uIcCrSmrImrqvPlTJekYYQpzG8DxgFbEmabfULS/jEDknNtbkxSswRomyJ9U1Jb7rpiCdBGUknSW0ZbYGXs7Tcn+iVtRnhgvyD0GikIXQBmNj1afVXSIuBBSTflS5ukPgQfwL6SEsdtmTimpNJ8aUvDo4Teel3zqGsJ8FnCkES8Cqwl9KaakEdtcY4BPjWzqUna86HrJuBpM7swkSDpHUJz1eHA43WlzZu5UjObpDZCSZ0JPSBmp9yjbphNqML2SEpPbuvMuv6oav8swbF9cOTAy7uuNCQMy3Z51LY9wTn6BuFHuoSyZsF5BKd8od03CG+g+dL1YZp0AYnOKXm9Z5I2JTiqk2sl+dLVE3gnnmBmHxG6AXevS21uTFIzDjhQUptY2k8IX9DL+ZEEwOvAMuDoREKs/XZcrFxW9UtqTBj7sj0w0sy+LQRdlbBX9Dknj9peJYzjiC/XR3k/Av6YR22pOJLQ2+zzPOp6FthZUodY2r4Eozwz2s73PRsFNKOiMcmXrs+BXeMJknoRemDNrVNtte1v3RAXgrNpAfAfwgCf04Dl5H7QYkvgqGh5A/ggtt3SyvqCrwTOJAxSeo7wJ7BlrvQTnHtG6CW1R9LSLF+6omP+mzB+YyQwArg6OuYjsTJ50ZZC60mkHrRY19/nY4TBnSOBQwgDBY2Kg1DrWtcmhCbUNwh/dMcRBvH+J6lc3r7P6Hl7J01ePu7ZOYRa203R8Y4nOOHnAK3qUltWfiQNcSG00U4kWOUFhF45JTk+Z9foR51q6RqVEXApoalkFaH3Uv9c6ie84RScruh41wDvRw/994Qmrl8DTWJl8qItxfFPoqIxycf3+fvoD2dldLxpwM+SyuTr++xBGJ29gtA0+ADQrkC0dSAMqrwoTX4+vksBvwTeje7ZV8D/Ad3qWpuHoHccx3FqjftMHMdxnFrjxsRxHMepNW5MHMdxnFrjxsRxHMepNW5MHMdxnFrjxsRxHMepNW5MHCcLSBoh6X9SpD8gaWqKXdIdp2s0FewhWRWY+lwm6axcn8cpDjzQo+NkhxGESAW3JqVfQwhtUYgMJoyUdpxa48bEcWqBpCaUBSGsgJn9tw7lVAszm5JvDU7DwZu5nAZPoqlJ0hGSZktaLelVSb2Tyv1W0tuSlkr6RtIzknoklZkk6VFJp0n6L7CaELvst0CXqOnIJD0QP3fSMbpIGitpUTSb4LuSjqviGk6V9IGkNZI+l3RBBtd9mKRpklZIWiLpTUlDYvkbm7kkDY1pT1661kaHUxx4zcQpFroANxNmGFxFCAg5XtL2ZrY6KtOJMKnW54Sgg2cAr0nawczi82zvRQjvfSEhvtX7hKl5hxOiygIsTCVC0haEQIYrCQEqvwR2AjqnEy7pfEI8rRuASYTZB6+RtNLM7kizT3fCHCW3EWadbB7tt1ma00wnNHvFuRHYkRAjq0Y6nCIiW0HsfPGlUBdCsEAD9oyldQHWA2ek2aeE4Ov4ATghlj6JYIy2Sip/IzA3zbmnxravIwTk65jmvF0jrYdE25sQglhemVRuDPA1aYLwEfw3i6u4LwaclSbvV9H9GV4bHb4Uz+LNXE6x8K2ZvZ7YMLPPCdFyd0+kSdpD0n8kLSb8ka4kTM+6Q9KxppnZ1zXUMRz4t5ktyLD8YMLkRP+S1DixECK7bkmoTaXiPcKMjg9GPc1aZSpQ0t6EjgQXm9nEWupwigQ3Jk6xkDyhVyKtI4CkbYEXCKG6Tyc0ZQ2MyjRP2u+bWuhoTwjtnSmJiaI+IIQ/TywvRekpm8cszLZ3ONCNENJ9kaSHJW1e2ckkbUNoHnvSzP5YWx1O8eA+E6dY2CJN2gfR+kGEyckOt2hK4ujNO5WPoTbzNiwmMmAZ8l30eQipjdhH6XY0s+eA56KpZg8m1DZuJ8xhXgFJzQgTZy0mzF+fFR1OceDGxCkWtpC0Z6KpK6qJ7Ar8LcpvQejiuz62z4/J/Deyloo1mFRMAM6WtKWZZVLDeYPgo9k6Mg7VxkLngYejnlzJTvY4dxLmAN/dzJZnW4fTsHFj4hQLi4D/lZTozTWG0IT1QJQ/keB0/5ukvwJ9CL2tvs/w+LOBLSWdROjdtcjM5qYodwtwAjBZ0rWE3ly9CFOs3pBc2My+l3QVcJukLsArhObpHYBhZjYqeR8ASacTDMe/gfnA9oQ5wP+epvxxhNrItcBmkvaIZc+oqQ6neHBj4hQLnxO6tf6B0JNrKnCsRd2Czew9SScDVxK6984k/Pn+X4bH/ycwjNBtdnPgQcI0veUws4WS9orK3Qo0Az4h9PJKiZndIGk+8BvCeJbVwMdVaHsXOIzQHXozgp/mL8AVaconOhlcGi1xtiP0VKuJDqdI8Gl7nQZPNIBwJzMbkG8tjtNQ8d5cjuM4Tq1xY+I4juPUGm/mchzHcWqN10wcx3GcWuPGxHEcx6k1bkwcx3GcWuPGxHEcx6k1bkwcx3GcWvP/NgpX3B0NA04AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = dfo.plot(lw=2, color='red', marker='.', markersize=10, title='Aerosol particle number size distribution', fontsize=15)\n", "ax.set_xlabel(\"particle size\", fontsize=15)\n", "ax.set_ylabel(\"Number of particles\", fontsize=15)\n", "ax.title.set_size(14)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }