
Write your own ESMValTool recipes and diagnostic scripts

Yanchun He (NERSC)

31th May, 2023

ESMValTool Workshop, 30-31,May 2023

Commnunication between ESMValCore and ESMValTool

A complete ESMVALTool diagnostic procedure normally involves two steps:

The ESMValCore read configuration, the recipes, and do the preprocessing, save the data and information as YAML files.

The ESMValTool get information from the YAML files, and read the preprocessed data , and further pass information of the analaysed

data so that the ESMValCore will save the data, plots, and their provenance.

The commnunication between the ESMValCore and ESMValTool is through the saved YAML files (example here) and the diagnostic

script interfaces. (more explainations on the interfaces).

ESMValTool Workshop, 30-31,May 2023

http://ns2345k.web.sigma2.no/diagnostics/esmvaltool/yanchun/recipe_python_20200731_124254/run/diagnostic1/script1/
https://docs.esmvaltool.org/en/latest/api/esmvaltool.diag_scripts.shared.html
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html

Building a recipe from scratch

The easiest way to make a new recipe is to start from an existing one, and modify it until it does exactly what you need. However, in this

episode we will start from scratch. This forces us to think about all the steps.

Specifically, this will cover:

documentation

datasets

preprocessors

diagnostics script

Detailed description of the recipe format is found at: "The recipe format":

ESMValTool Workshop, 30-31,May 2023

https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html#recipe-section-documentation
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html#recipe-section-datasets
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html#recipe-section-preprocessors
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html#recipe-section-diagnostics
https://docs.esmvaltool.org/projects/esmvalcore/en/latest/recipe/overview.html

The documentation

documentation:
 title: Atlantic Meridional Overturning Circulation (AMOC) and the drake passage current
 description: |
 Recipe to produce time series figures of the derived variable, the
 Atlantic meridional overturning circulation (AMOC).
 This recipe also produces transect figures of the stream functions for
 the years 2001-2004.

 authors:
 - demo_le

 maintainer:
 - demo_le

 references:
 - demora2018gmd

 projects:
 - ukesm

See complet list of verified entries of authors , maintainer , references and projects .
https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml

Note: one has to add entries in the config_references.yml so that it can be used in the recipe. Use unmaintained as a general name

before you change the config_references.yml .

ESMValTool Workshop, 30-31,May 2023

https://github.com/ESMValGroup/ESMValTool/blob/main/esmvaltool/config-references.yml

Datasets

datasets:
 - {dataset: CanESM2, project: CMIP5, exp: historical, ensemble: r1i1p1, start_year: 2001, end_year: 2004}
 - {dataset: UKESM1-0-LL, project: CMIP6, exp: historical, ensemble: r1i1p1f2, start_year: 2001, end_year: 2004, grid: gn}

dataset name (key dataset, value e.g. MPI-ESM-LR or UKESM1-0-LL).

project (key project, value CMIP5 or CMIP6 for CMIP data, OBS for observational data, ana4mips for ana4mips data, obs4MIPs for

obs4MIPs data, ICON for ICON data).

experiment (key exp, value e.g. historical, amip, piControl, rcp85).

mip (for CMIP data, key mip, value e.g. Amon, Omon, LImon). Also call table_id , see CMIP6 table_id.

ensemble member (key ensemble, value e.g. r1i1p1, r1i1p1f1).

sub-experiment id (key sub_experiment, value e.g. s2000, s(2000:2002), for DCPP data only).

time range (e.g. key-value start_year: 1982, end_year: 1990).

model grid (native grid grid: gn or regridded grid grid: gr, for CMIP6 data only).

Note: start_year and end_year are optional, as it will be included in the diagnostic section.

ESMValTool Workshop, 30-31,May 2023

https://github.com/PCMDI/cmip6-cmor-tables/tree/master/Tables

Preprocessors

 preprocessors:
 prep_map:
 regrid:
 target_grid: 1x1
 scheme: linear
 climate_statistics:
 operator: mean
 multi_model_statistics:
 span: overlap
 statistics: [mean]

More on the preprocessors

ESMValTool Workshop, 30-31,May 2023

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/recipe/preprocessor.html

Diagnostics

A (simplified) example diagnostics section could look like

diagnostics:
 diagnostic_name:
 title: Air temperature tutorial diagnostic
 description: A longer description can be added here.
 themes:
 - phys
 realms:
 - atmos
 variables:
 variable_name:
 short_name: ta
 preprocessor: preprocessor_name
 mip: Amon
 scripts:
 script_name:
 script: examples/diagnostic.py

The title , description , themes and realms entries are optional.

The diagnostic_name , variable_name , script_name are customized but mandatory, and they will appear in the output files and

directories.

The variable_name can be the same as standard short_name , and then the short_name can be omitted (not tested)

ESMValTool Workshop, 30-31,May 2023

Inside the diagnostic script

The diagnostic script will do some final fine-tunning analysis, visualise the results, save the data and the plots (by passing information back

to ESMValCore). The structure of a diagnostic script is:

"""Python example diagnostic."""
import <some libraries>
from <libraries> import <method/function/class>

from esmvaltool.diag_scripts.shared import (
 run_diagnostic,
 ...
)
from esmvaltool.diag_scripts.shared.plot import quickplot

def some_function(xx):
 """ function for data analysis or visualisation, etc"""
 ...
 return

def main(cfg):
 ...
 some_function(xx)
 ...

 return

if __name__ == '__main__':

 with run_diagnostic() as config:
 main(config)

ESMValTool Workshop, 30-31,May 2023

Inside the diagnostic script (cont.)

def main(cfg):
 ...
 some_function(xx)
 ...

 return

if __name__ == '__main__':

 with run_diagnostic() as config:
 main(config)

The function run_diagnostic is called a context manager provided with ESMValTool and is the main entry point for most Python

diagnostics. More on the shared diagnostic intefaces

The commnunication between the ESMValCore and ESMValTool is through the saved YAML files (example here), passing to the

diagnostic script by the context manager run_diagnosc . (more explainations on the interfaces).

ESMValTool Workshop, 30-31,May 2023

https://docs.esmvaltool.org/en/latest/api/esmvaltool.diag_scripts.shared.html
http://ns2345k.web.sigma2.no/diagnostics/esmvaltool/yanchun/recipe_python_20200731_124254/run/diagnostic1/script1/
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html

Hands-on:

https://nordicesmhub.github.io/esmvaltool-handson/03-write-a-simple-recipes-scripts

https://esmvalgroup.github.io/ESMValTool_Tutorial/06-preprocessor/index.html

https://esmvalgroup.github.io/ESMValTool_Tutorial/08-diagnostics/index.html

References

https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html

ESMValTool Workshop, 30-31,May 2023

https://nordicesmhub.github.io/esmvaltool-handson/03-write-a-simple-recipes-scripts
https://esmvalgroup.github.io/ESMValTool_Tutorial/06-preprocessor/index.html
https://esmvalgroup.github.io/ESMValTool_Tutorial/08-diagnostics/index.html
https://docs.esmvaltool.org/projects/ESMValCore/en/latest/interfaces.html

